Métodos multigrid espaço-tempo para resolver as equações do calor e da poroelasticidade

Detalhes bibliográficos
Autor(a) principal: Franco, Sebastião Romero
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPR
Texto Completo: https://hdl.handle.net/1884/54859
Resumo: Orientador: Prof. Dr. Marcio Augusto Villela Pinto
id UFPR_e1454a251d7d8432703a4e4deb648af1
oai_identifier_str oai:acervodigital.ufpr.br:1884/54859
network_acronym_str UFPR
network_name_str Repositório Institucional da UFPR
repository_id_str 308
spelling Gaspar Lorenz, Francisco JoséUniversidade Federal do Paraná. Setor de Tecnologia. Programa de Pós-Graduação em Métodos Numéricos em EngenhariaPinto, Marcio Augusto Villela, 1969-Franco, Sebastião Romero2024-05-16T14:38:37Z2024-05-16T14:38:37Z2017https://hdl.handle.net/1884/54859Orientador: Prof. Dr. Marcio Augusto Villela PintoCoorientador: Prof. Dr. Francisco José Gaspar LorenzTese (doutorado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Métodos Numéricos em Engenharia. Defesa: Curitiba, 12/12/2017Inclui referências : f. 188-193Área de concentração: Mecânica computacionalResumo: Nesta tese apresenta-se um estudo dos métodos usados para resolver equações diferenciais parciais transientes com o uso do método multigrid. Os modelos matemáticos usados são dados pela equação do calor e as equações da poroelasticidade. O modelo numérico e obtido através do emprego do Método das Diferenças Finitas, usando aproximação central de segunda ordem para a discretização espacial e os métodos de Euler e Crank-Nicolson para as discretizações no tempo. Na solução do sistema de equações resultante da discretização, utilizou-se o método multigrid geométrico com esquema CS, ciclos V , F e W , operador de restrição por ponderação completa, prolongação por interpolação linear nos casos unidimensionais e bilinear nos casos bidimensionais, e razão de engrossamento padrão nas direções das coordenadas espaciais. Utilizou-se o suavizado Gauss-Seidel para a equação do calor e o suavizador Vanka de 3 e 5 pontos para as equações da poroelasticidade. Com o objetivo de desenvolver algoritmos paralelizáveis, além da ordenação lexicográfica, usou-se a ordenação colorida para a suavização das incógnitas. Para os primeiros estudos com a equação do calor utilizou-se os métodos Time-Stepping - multigrid, Waveform Relaxation - multigrid e Space-Time - multigrid. Visando algoritmos paralelizáveis, propôs-se um novo método, o Space-Time com engrossamento padrão. Esse método consiste em usar engrossamento padrão em todos os níveis de malha, um apropriado operador de restrição e prolongação, e uma estratégia de suavização baseada em um processo que depende do grau de anisotropia de cada malha; processo esse, que contou com a ajuda da analise de Fourier local (LFA). Propôs-se o uso do método da dupla discretização associado ao Space-Time com engrossamento padrão para garantir aproximações de 2a ordem de acurácia. Essa técnica apresentou robustez, bons fatores de convergência e possibilitou o uso de algoritmos altamente paralelizáveis no espaço e tempo, podendo ser considerado como um excelente método para resolver esse tipo de problemas. Propôs-se também o método Waveform Relaxation - multigrid para o sistema de equações da poroelasticidade. Esse método permite o desenvolvimento de algoritmos que podem ter um maior grau de paralelização que os algoritmos usuais descritos com o método Time-Stepping. O uso do método Waveform Relaxation - multigrid associado ao suavizador Vanka com ordenação colorida, além de possibilitar o desenvolvimento de algoritmos paralelizáveis no espaço e tempo, apresenta robustez e bons fatores de convergência. Com isso, pode ser considerado como um excelente método para resolver os problemas propostos.Abstract: This thesis presents a study of the methods used to solve transient partial differential equations with the application of the multigrid method. The mathematical models employed are given by heat equation and poroelasticity equations. The numerical model is obtained by means of the Finite Difference Method, with the application of second-order central approximation for spatial discretization and Euler and Crank-Nicolson methods for time discretization. For the solution of the equation system that resulted from the discretization, the multigrid geometric method was used with CS scheme, V , F and W -cycles, fullweighting restriction operator, linear interpolation prolongation for one-dimensional cases and bilinear for bi-dimensional cases, and standard coarsening ratio in the directions of the spatial coordinates. The Gauss-Seidel smoother was used for heat equation and the 3-point and 5-point Vanka smoothers for the poroelasticity equations. Aiming at developing parallelizable algorithms, besides the lexicographical ordering, color ordering was employed in the unknowns smoothing. In the first studies with the heat equation, the Time-Stepping-multigrid, Waveform Relaxation-multigrid and Space-Time-multigrid methods were employed. A new method, the Space-Time with standard coarsening, was proposed aimed at parallelizable algorithms. This method consists in using standard coarsening in every level of the mesh, an adequate prolongation and restriction operator and a smoothing strategy based on a process th at depends on the anisotropy degree of each grid; process which was assisted by local Fourier analysis (LFA). It was proposed the use of the double discretization method in conjunction with the Space-Time method with standard coarsening in order to assure accurate second-order approximations. This technique presented robustness, good convergence factors and allowed the use of highly parallelizable algorithms in space and time, and can be considered as an excellent method to solve this type of problems. Moreover, the Waveform Relaxation-multigrid method was proposed for the poroelasticity equation system. This method enables the development of algorithms that might have a higher degree of parallelization than the algorithms usually described for the Time-Stepping method. The application of the Waveform Relaxation multigrid method together with the Vanka smoother with color ordering, besides allowing the development of parallelizable algorithms in space and time, presents robustness and good convergence factors. With this, it can be considered as an excellent method to solve the proposed problems.218 f. : il. ; 31 cm.application/pdfDisponível em formato digitalAnálise numéricaEquações diferenciais parciaisElasticidadeModelos matemáticosMétodos multigrid espaço-tempo para resolver as equações do calor e da poroelasticidadeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisporreponame:Repositório Institucional da UFPRinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRinfo:eu-repo/semantics/openAccessORIGINALR - T - SEBASTIAO ROMERO FRANCO.pdfapplication/pdf3903815https://acervodigital.ufpr.br/bitstream/1884/54859/1/R%20-%20T%20-%20SEBASTIAO%20ROMERO%20FRANCO.pdf80dc89e99bd755320048af9811943652MD51open access1884/548592024-05-16 11:38:37.156open accessoai:acervodigital.ufpr.br:1884/54859Repositório de PublicaçõesPUBhttp://acervodigital.ufpr.br/oai/requestopendoar:3082024-05-16T14:38:37Repositório Institucional da UFPR - Universidade Federal do Paraná (UFPR)false
dc.title.pt_BR.fl_str_mv Métodos multigrid espaço-tempo para resolver as equações do calor e da poroelasticidade
title Métodos multigrid espaço-tempo para resolver as equações do calor e da poroelasticidade
spellingShingle Métodos multigrid espaço-tempo para resolver as equações do calor e da poroelasticidade
Franco, Sebastião Romero
Análise numérica
Equações diferenciais parciais
Elasticidade
Modelos matemáticos
title_short Métodos multigrid espaço-tempo para resolver as equações do calor e da poroelasticidade
title_full Métodos multigrid espaço-tempo para resolver as equações do calor e da poroelasticidade
title_fullStr Métodos multigrid espaço-tempo para resolver as equações do calor e da poroelasticidade
title_full_unstemmed Métodos multigrid espaço-tempo para resolver as equações do calor e da poroelasticidade
title_sort Métodos multigrid espaço-tempo para resolver as equações do calor e da poroelasticidade
author Franco, Sebastião Romero
author_facet Franco, Sebastião Romero
author_role author
dc.contributor.other.pt_BR.fl_str_mv Gaspar Lorenz, Francisco José
Universidade Federal do Paraná. Setor de Tecnologia. Programa de Pós-Graduação em Métodos Numéricos em Engenharia
dc.contributor.advisor1.fl_str_mv Pinto, Marcio Augusto Villela, 1969-
dc.contributor.author.fl_str_mv Franco, Sebastião Romero
contributor_str_mv Pinto, Marcio Augusto Villela, 1969-
dc.subject.por.fl_str_mv Análise numérica
Equações diferenciais parciais
Elasticidade
Modelos matemáticos
topic Análise numérica
Equações diferenciais parciais
Elasticidade
Modelos matemáticos
description Orientador: Prof. Dr. Marcio Augusto Villela Pinto
publishDate 2017
dc.date.issued.fl_str_mv 2017
dc.date.accessioned.fl_str_mv 2024-05-16T14:38:37Z
dc.date.available.fl_str_mv 2024-05-16T14:38:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1884/54859
url https://hdl.handle.net/1884/54859
dc.language.iso.fl_str_mv por
language por
dc.relation.pt_BR.fl_str_mv Disponível em formato digital
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 218 f. : il. ; 31 cm.
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPR
instname:Universidade Federal do Paraná (UFPR)
instacron:UFPR
instname_str Universidade Federal do Paraná (UFPR)
instacron_str UFPR
institution UFPR
reponame_str Repositório Institucional da UFPR
collection Repositório Institucional da UFPR
bitstream.url.fl_str_mv https://acervodigital.ufpr.br/bitstream/1884/54859/1/R%20-%20T%20-%20SEBASTIAO%20ROMERO%20FRANCO.pdf
bitstream.checksum.fl_str_mv 80dc89e99bd755320048af9811943652
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da UFPR - Universidade Federal do Paraná (UFPR)
repository.mail.fl_str_mv
_version_ 1813898832647290880