Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yield

Detalhes bibliográficos
Autor(a) principal: Trindade, Filipe Silveira
Data de Publicação: 2019
Outros Autores: Alves, Marcelo de Carvalho, Noetzold, Rafael, Andrade, Igor Carvalho de, Pozza, Adélia Aziz Alexandre
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista de Ciências Agrárias (Belém. Online)
Texto Completo: https://ajaes.ufra.edu.br/index.php/ajaes/article/view/2928
Resumo: Recent researches, with the aid of technology, have shown satisfactory results aiming at the proper management of agricultural crops. Therefore, this study sought to evaluate the spectral and temporal relationships of the MODIS sensor normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) with grain yield, relief, texture and soil organic matter (SOM), during the soybean phenological cycle in Campo Verde (MT), in the 2012/2013 harvest. The EVI/NDVI of the MODIS orbital sensor products (MOD13Q1 and MYD13Q1) and the Savitzky-Golay (SG) filtering for noise correction (anomalous values) present in time series of these IVs were used. Pearson’s (r) (p ≤ 0,05) correlation was used, between the aforementioned variables with the application of SG filtering in the time series of the indices during the phenological cycle of the crop. The best phenological stages were identified to generate predictive models on soil attributes variability and productivity prediction. The coefficients of determination (R²) of EVI in the R1 stage with SOM, clay, silt and sand were, R² = 0.77; 0.75; 0.74; 0.75, respectively. With NDVI in the phenological stage R2 it was obtained R²= 0.44, with the productivity. The EVI at R1, R2 and R3 stages (beginning of the reproductive cycle) generated the best soil attributes prediction models, while the NDVI at the R2 stage resulted in the best productivity prediction. Overall, the SG filtering was a necessary tool to study, because the noise correction in the time series generated better predictive models.
id UFRA_9a5fc61c5ec6436d839c0311effd7749
oai_identifier_str oai:ojs.www.periodicos.ufra.edu.br:article/2928
network_acronym_str UFRA
network_name_str Revista de Ciências Agrárias (Belém. Online)
repository_id_str
spelling Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yieldRelação espectro-temporal de índices de vegetação com atributos do solo e produtividade da sojaGlycine max L. Merr.Phenological cycleRemote sensingNDVIEVIGlycine max L. Merr.Ciclo fenológicoSensoriamento remotoNDVIEVISensoriamento Remotoíndices de vegetaçãosojaRecent researches, with the aid of technology, have shown satisfactory results aiming at the proper management of agricultural crops. Therefore, this study sought to evaluate the spectral and temporal relationships of the MODIS sensor normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) with grain yield, relief, texture and soil organic matter (SOM), during the soybean phenological cycle in Campo Verde (MT), in the 2012/2013 harvest. The EVI/NDVI of the MODIS orbital sensor products (MOD13Q1 and MYD13Q1) and the Savitzky-Golay (SG) filtering for noise correction (anomalous values) present in time series of these IVs were used. Pearson’s (r) (p ≤ 0,05) correlation was used, between the aforementioned variables with the application of SG filtering in the time series of the indices during the phenological cycle of the crop. The best phenological stages were identified to generate predictive models on soil attributes variability and productivity prediction. The coefficients of determination (R²) of EVI in the R1 stage with SOM, clay, silt and sand were, R² = 0.77; 0.75; 0.74; 0.75, respectively. With NDVI in the phenological stage R2 it was obtained R²= 0.44, with the productivity. The EVI at R1, R2 and R3 stages (beginning of the reproductive cycle) generated the best soil attributes prediction models, while the NDVI at the R2 stage resulted in the best productivity prediction. Overall, the SG filtering was a necessary tool to study, because the noise correction in the time series generated better predictive models.Recentes pesquisas, com auxílio da tecnologia, têm encontrado resultados satisfatórios visando o manejo adequado das culturas agrícolas. Assim sendo, este estudo procurou avaliar relações espectrais e temporais dos índices normalized difference vegetation index (NDVI) e enhanced vegetation index (EVI) do sensor MODIS com a produtividade de grãos, relevo, textura e matéria orgânica do solo (MOS), durante o ciclo fenológico da soja em Campo Verde, no Mato Grosso (MT), na safra 2012/2013. Utilizaram-se o EVI/NDVI dos produtos do sensor orbital MODIS (MOD13Q1 e MYD13Q1) e a filtragem Savitzky-Golay (SG) para correção dos ruídos (valores anômalos) presentes em séries temporais desses IVs. Foi utilizada a correlação de Pearson (r) (p ≤ 0,05), entre as variáveis supracitadas com a aplicação da filtragem SG na série temporal dos índices durante o ciclo fenológico da cultura. Foram identificados os melhores estádios fenológicos para se gerar modelos preditivos sobre a variabilidade dos atributos do solo e a previsão da produtividade. Os coeficientes de determinação (R²) do EVI no estádio R1 com MOS, argila, silte e areia foram R² = 0,77; 0,75; 0,74; 0,75, respectivamente. Com NDVI no estádio fenológico R2 obteve R² = 0,44 com a produtividade. O EVI nos estádios R1, R2 e R3 (início do ciclo reprodutivo) gerou os melhores modelos de predição dos atributos do solo e o NDVI no estádio R2 para previsão da produtividade. A filtragem SG foi ferramenta necessária ao estudo, pois a correção dos ruídos nas séries temporais, de forma geral, gerou melhores modelos preditivos.Universidade Federal Rural da Amazônia/UFRA2019-03-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTEXTOapplication/pdfhttps://ajaes.ufra.edu.br/index.php/ajaes/article/view/2928Amazonian Journal of Agricultural Sciences Journal of Agricultural and Environmental Sciences; Vol 62 (2019): RCARevista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciences; v. 62 (2019): RCA2177-87601517-591Xreponame:Revista de Ciências Agrárias (Belém. Online)instname:Universidade Federal Rural da Amazônia (UFRA)instacron:UFRAporhttps://ajaes.ufra.edu.br/index.php/ajaes/article/view/2928/1550Copyright (c) 2019 Revista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciencesinfo:eu-repo/semantics/openAccessTrindade, Filipe SilveiraAlves, Marcelo de CarvalhoNoetzold, RafaelAndrade, Igor Carvalho dePozza, Adélia Aziz Alexandre2020-01-20T14:14:53Zoai:ojs.www.periodicos.ufra.edu.br:article/2928Revistahttps://ajaes.ufra.edu.br/index.php/ajaes/PUBhttps://ajaes.ufra.edu.br/index.php/ajaes/oaiallan.lobato@ufra.edu.br || ajaes.suporte@gmail.com2177-87601517-591Xopendoar:2020-01-20T14:14:53Revista de Ciências Agrárias (Belém. Online) - Universidade Federal Rural da Amazônia (UFRA)false
dc.title.none.fl_str_mv Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yield
Relação espectro-temporal de índices de vegetação com atributos do solo e produtividade da soja
title Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yield
spellingShingle Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yield
Trindade, Filipe Silveira
Glycine max L. Merr.
Phenological cycle
Remote sensing
NDVI
EVI
Glycine max L. Merr.
Ciclo fenológico
Sensoriamento remoto
NDVI
EVI
Sensoriamento Remoto
índices de vegetação
soja
title_short Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yield
title_full Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yield
title_fullStr Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yield
title_full_unstemmed Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yield
title_sort Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yield
author Trindade, Filipe Silveira
author_facet Trindade, Filipe Silveira
Alves, Marcelo de Carvalho
Noetzold, Rafael
Andrade, Igor Carvalho de
Pozza, Adélia Aziz Alexandre
author_role author
author2 Alves, Marcelo de Carvalho
Noetzold, Rafael
Andrade, Igor Carvalho de
Pozza, Adélia Aziz Alexandre
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Trindade, Filipe Silveira
Alves, Marcelo de Carvalho
Noetzold, Rafael
Andrade, Igor Carvalho de
Pozza, Adélia Aziz Alexandre
dc.subject.por.fl_str_mv Glycine max L. Merr.
Phenological cycle
Remote sensing
NDVI
EVI
Glycine max L. Merr.
Ciclo fenológico
Sensoriamento remoto
NDVI
EVI
Sensoriamento Remoto
índices de vegetação
soja
topic Glycine max L. Merr.
Phenological cycle
Remote sensing
NDVI
EVI
Glycine max L. Merr.
Ciclo fenológico
Sensoriamento remoto
NDVI
EVI
Sensoriamento Remoto
índices de vegetação
soja
description Recent researches, with the aid of technology, have shown satisfactory results aiming at the proper management of agricultural crops. Therefore, this study sought to evaluate the spectral and temporal relationships of the MODIS sensor normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) with grain yield, relief, texture and soil organic matter (SOM), during the soybean phenological cycle in Campo Verde (MT), in the 2012/2013 harvest. The EVI/NDVI of the MODIS orbital sensor products (MOD13Q1 and MYD13Q1) and the Savitzky-Golay (SG) filtering for noise correction (anomalous values) present in time series of these IVs were used. Pearson’s (r) (p ≤ 0,05) correlation was used, between the aforementioned variables with the application of SG filtering in the time series of the indices during the phenological cycle of the crop. The best phenological stages were identified to generate predictive models on soil attributes variability and productivity prediction. The coefficients of determination (R²) of EVI in the R1 stage with SOM, clay, silt and sand were, R² = 0.77; 0.75; 0.74; 0.75, respectively. With NDVI in the phenological stage R2 it was obtained R²= 0.44, with the productivity. The EVI at R1, R2 and R3 stages (beginning of the reproductive cycle) generated the best soil attributes prediction models, while the NDVI at the R2 stage resulted in the best productivity prediction. Overall, the SG filtering was a necessary tool to study, because the noise correction in the time series generated better predictive models.
publishDate 2019
dc.date.none.fl_str_mv 2019-03-14
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
TEXTO
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ajaes.ufra.edu.br/index.php/ajaes/article/view/2928
url https://ajaes.ufra.edu.br/index.php/ajaes/article/view/2928
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://ajaes.ufra.edu.br/index.php/ajaes/article/view/2928/1550
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural da Amazônia/UFRA
publisher.none.fl_str_mv Universidade Federal Rural da Amazônia/UFRA
dc.source.none.fl_str_mv Amazonian Journal of Agricultural Sciences Journal of Agricultural and Environmental Sciences; Vol 62 (2019): RCA
Revista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciences; v. 62 (2019): RCA
2177-8760
1517-591X
reponame:Revista de Ciências Agrárias (Belém. Online)
instname:Universidade Federal Rural da Amazônia (UFRA)
instacron:UFRA
instname_str Universidade Federal Rural da Amazônia (UFRA)
instacron_str UFRA
institution UFRA
reponame_str Revista de Ciências Agrárias (Belém. Online)
collection Revista de Ciências Agrárias (Belém. Online)
repository.name.fl_str_mv Revista de Ciências Agrárias (Belém. Online) - Universidade Federal Rural da Amazônia (UFRA)
repository.mail.fl_str_mv allan.lobato@ufra.edu.br || ajaes.suporte@gmail.com
_version_ 1797231629886816256