Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yield
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista de Ciências Agrárias (Belém. Online) |
Texto Completo: | https://ajaes.ufra.edu.br/index.php/ajaes/article/view/2928 |
Resumo: | Recent researches, with the aid of technology, have shown satisfactory results aiming at the proper management of agricultural crops. Therefore, this study sought to evaluate the spectral and temporal relationships of the MODIS sensor normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) with grain yield, relief, texture and soil organic matter (SOM), during the soybean phenological cycle in Campo Verde (MT), in the 2012/2013 harvest. The EVI/NDVI of the MODIS orbital sensor products (MOD13Q1 and MYD13Q1) and the Savitzky-Golay (SG) filtering for noise correction (anomalous values) present in time series of these IVs were used. Pearson’s (r) (p ≤ 0,05) correlation was used, between the aforementioned variables with the application of SG filtering in the time series of the indices during the phenological cycle of the crop. The best phenological stages were identified to generate predictive models on soil attributes variability and productivity prediction. The coefficients of determination (R²) of EVI in the R1 stage with SOM, clay, silt and sand were, R² = 0.77; 0.75; 0.74; 0.75, respectively. With NDVI in the phenological stage R2 it was obtained R²= 0.44, with the productivity. The EVI at R1, R2 and R3 stages (beginning of the reproductive cycle) generated the best soil attributes prediction models, while the NDVI at the R2 stage resulted in the best productivity prediction. Overall, the SG filtering was a necessary tool to study, because the noise correction in the time series generated better predictive models. |
id |
UFRA_9a5fc61c5ec6436d839c0311effd7749 |
---|---|
oai_identifier_str |
oai:ojs.www.periodicos.ufra.edu.br:article/2928 |
network_acronym_str |
UFRA |
network_name_str |
Revista de Ciências Agrárias (Belém. Online) |
repository_id_str |
|
spelling |
Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yieldRelação espectro-temporal de índices de vegetação com atributos do solo e produtividade da sojaGlycine max L. Merr.Phenological cycleRemote sensingNDVIEVIGlycine max L. Merr.Ciclo fenológicoSensoriamento remotoNDVIEVISensoriamento Remotoíndices de vegetaçãosojaRecent researches, with the aid of technology, have shown satisfactory results aiming at the proper management of agricultural crops. Therefore, this study sought to evaluate the spectral and temporal relationships of the MODIS sensor normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) with grain yield, relief, texture and soil organic matter (SOM), during the soybean phenological cycle in Campo Verde (MT), in the 2012/2013 harvest. The EVI/NDVI of the MODIS orbital sensor products (MOD13Q1 and MYD13Q1) and the Savitzky-Golay (SG) filtering for noise correction (anomalous values) present in time series of these IVs were used. Pearson’s (r) (p ≤ 0,05) correlation was used, between the aforementioned variables with the application of SG filtering in the time series of the indices during the phenological cycle of the crop. The best phenological stages were identified to generate predictive models on soil attributes variability and productivity prediction. The coefficients of determination (R²) of EVI in the R1 stage with SOM, clay, silt and sand were, R² = 0.77; 0.75; 0.74; 0.75, respectively. With NDVI in the phenological stage R2 it was obtained R²= 0.44, with the productivity. The EVI at R1, R2 and R3 stages (beginning of the reproductive cycle) generated the best soil attributes prediction models, while the NDVI at the R2 stage resulted in the best productivity prediction. Overall, the SG filtering was a necessary tool to study, because the noise correction in the time series generated better predictive models.Recentes pesquisas, com auxílio da tecnologia, têm encontrado resultados satisfatórios visando o manejo adequado das culturas agrícolas. Assim sendo, este estudo procurou avaliar relações espectrais e temporais dos índices normalized difference vegetation index (NDVI) e enhanced vegetation index (EVI) do sensor MODIS com a produtividade de grãos, relevo, textura e matéria orgânica do solo (MOS), durante o ciclo fenológico da soja em Campo Verde, no Mato Grosso (MT), na safra 2012/2013. Utilizaram-se o EVI/NDVI dos produtos do sensor orbital MODIS (MOD13Q1 e MYD13Q1) e a filtragem Savitzky-Golay (SG) para correção dos ruídos (valores anômalos) presentes em séries temporais desses IVs. Foi utilizada a correlação de Pearson (r) (p ≤ 0,05), entre as variáveis supracitadas com a aplicação da filtragem SG na série temporal dos índices durante o ciclo fenológico da cultura. Foram identificados os melhores estádios fenológicos para se gerar modelos preditivos sobre a variabilidade dos atributos do solo e a previsão da produtividade. Os coeficientes de determinação (R²) do EVI no estádio R1 com MOS, argila, silte e areia foram R² = 0,77; 0,75; 0,74; 0,75, respectivamente. Com NDVI no estádio fenológico R2 obteve R² = 0,44 com a produtividade. O EVI nos estádios R1, R2 e R3 (início do ciclo reprodutivo) gerou os melhores modelos de predição dos atributos do solo e o NDVI no estádio R2 para previsão da produtividade. A filtragem SG foi ferramenta necessária ao estudo, pois a correção dos ruídos nas séries temporais, de forma geral, gerou melhores modelos preditivos.Universidade Federal Rural da Amazônia/UFRA2019-03-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTEXTOapplication/pdfhttps://ajaes.ufra.edu.br/index.php/ajaes/article/view/2928Amazonian Journal of Agricultural Sciences Journal of Agricultural and Environmental Sciences; Vol 62 (2019): RCARevista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciences; v. 62 (2019): RCA2177-87601517-591Xreponame:Revista de Ciências Agrárias (Belém. Online)instname:Universidade Federal Rural da Amazônia (UFRA)instacron:UFRAporhttps://ajaes.ufra.edu.br/index.php/ajaes/article/view/2928/1550Copyright (c) 2019 Revista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciencesinfo:eu-repo/semantics/openAccessTrindade, Filipe SilveiraAlves, Marcelo de CarvalhoNoetzold, RafaelAndrade, Igor Carvalho dePozza, Adélia Aziz Alexandre2020-01-20T14:14:53Zoai:ojs.www.periodicos.ufra.edu.br:article/2928Revistahttps://ajaes.ufra.edu.br/index.php/ajaes/PUBhttps://ajaes.ufra.edu.br/index.php/ajaes/oaiallan.lobato@ufra.edu.br || ajaes.suporte@gmail.com2177-87601517-591Xopendoar:2020-01-20T14:14:53Revista de Ciências Agrárias (Belém. Online) - Universidade Federal Rural da Amazônia (UFRA)false |
dc.title.none.fl_str_mv |
Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yield Relação espectro-temporal de índices de vegetação com atributos do solo e produtividade da soja |
title |
Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yield |
spellingShingle |
Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yield Trindade, Filipe Silveira Glycine max L. Merr. Phenological cycle Remote sensing NDVI EVI Glycine max L. Merr. Ciclo fenológico Sensoriamento remoto NDVI EVI Sensoriamento Remoto índices de vegetação soja |
title_short |
Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yield |
title_full |
Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yield |
title_fullStr |
Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yield |
title_full_unstemmed |
Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yield |
title_sort |
Spectral-temporal relationship of vegetation indexes with soil attributes and soybean yield |
author |
Trindade, Filipe Silveira |
author_facet |
Trindade, Filipe Silveira Alves, Marcelo de Carvalho Noetzold, Rafael Andrade, Igor Carvalho de Pozza, Adélia Aziz Alexandre |
author_role |
author |
author2 |
Alves, Marcelo de Carvalho Noetzold, Rafael Andrade, Igor Carvalho de Pozza, Adélia Aziz Alexandre |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Trindade, Filipe Silveira Alves, Marcelo de Carvalho Noetzold, Rafael Andrade, Igor Carvalho de Pozza, Adélia Aziz Alexandre |
dc.subject.por.fl_str_mv |
Glycine max L. Merr. Phenological cycle Remote sensing NDVI EVI Glycine max L. Merr. Ciclo fenológico Sensoriamento remoto NDVI EVI Sensoriamento Remoto índices de vegetação soja |
topic |
Glycine max L. Merr. Phenological cycle Remote sensing NDVI EVI Glycine max L. Merr. Ciclo fenológico Sensoriamento remoto NDVI EVI Sensoriamento Remoto índices de vegetação soja |
description |
Recent researches, with the aid of technology, have shown satisfactory results aiming at the proper management of agricultural crops. Therefore, this study sought to evaluate the spectral and temporal relationships of the MODIS sensor normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) with grain yield, relief, texture and soil organic matter (SOM), during the soybean phenological cycle in Campo Verde (MT), in the 2012/2013 harvest. The EVI/NDVI of the MODIS orbital sensor products (MOD13Q1 and MYD13Q1) and the Savitzky-Golay (SG) filtering for noise correction (anomalous values) present in time series of these IVs were used. Pearson’s (r) (p ≤ 0,05) correlation was used, between the aforementioned variables with the application of SG filtering in the time series of the indices during the phenological cycle of the crop. The best phenological stages were identified to generate predictive models on soil attributes variability and productivity prediction. The coefficients of determination (R²) of EVI in the R1 stage with SOM, clay, silt and sand were, R² = 0.77; 0.75; 0.74; 0.75, respectively. With NDVI in the phenological stage R2 it was obtained R²= 0.44, with the productivity. The EVI at R1, R2 and R3 stages (beginning of the reproductive cycle) generated the best soil attributes prediction models, while the NDVI at the R2 stage resulted in the best productivity prediction. Overall, the SG filtering was a necessary tool to study, because the noise correction in the time series generated better predictive models. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03-14 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion TEXTO |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ajaes.ufra.edu.br/index.php/ajaes/article/view/2928 |
url |
https://ajaes.ufra.edu.br/index.php/ajaes/article/view/2928 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://ajaes.ufra.edu.br/index.php/ajaes/article/view/2928/1550 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural da Amazônia/UFRA |
publisher.none.fl_str_mv |
Universidade Federal Rural da Amazônia/UFRA |
dc.source.none.fl_str_mv |
Amazonian Journal of Agricultural Sciences Journal of Agricultural and Environmental Sciences; Vol 62 (2019): RCA Revista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciences; v. 62 (2019): RCA 2177-8760 1517-591X reponame:Revista de Ciências Agrárias (Belém. Online) instname:Universidade Federal Rural da Amazônia (UFRA) instacron:UFRA |
instname_str |
Universidade Federal Rural da Amazônia (UFRA) |
instacron_str |
UFRA |
institution |
UFRA |
reponame_str |
Revista de Ciências Agrárias (Belém. Online) |
collection |
Revista de Ciências Agrárias (Belém. Online) |
repository.name.fl_str_mv |
Revista de Ciências Agrárias (Belém. Online) - Universidade Federal Rural da Amazônia (UFRA) |
repository.mail.fl_str_mv |
allan.lobato@ufra.edu.br || ajaes.suporte@gmail.com |
_version_ |
1797231629886816256 |