NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic Diseases

Detalhes bibliográficos
Autor(a) principal: Carvalho, Lucimar Fossatti de
Data de Publicação: 2009
Outros Autores: Carvalho, Hugo José, Rech, Ciciliana Zílio
Tipo de documento: Artigo
Idioma: por
Título da fonte: Clinical and Biomedical Research
Texto Completo: https://seer.ufrgs.br/index.php/hcpa/article/view/5101
Resumo: Background: this research approaches the development of a neuro-fuzzy system to support the diagnosis of epileptic diseases (NFSDED). Neuro-fuzzy systems are the most common type of artificial intelligence in medicine. The neuro-fuzzy system contains medical knowledge represented by rules, gathering the strength of two paradigms: artificial neural networks and fuzzy logic. Objective: the main interest of the research is to examine the applicability of the t-norms and t-conorms fuzzy arithmetical operations, implemented by fuzzy neurons. Results: show that the arithmetical operations of Einstein's Sum/Product AND/OR implemented with the fuzzy neuron proposed by Kwan-Cai obtained the highest rates of system hits, when compared to the min/max arithmetical operations
id UFRGS-20_3d2cc929b1009025d4e328cd8db8cfcd
oai_identifier_str oai:seer.ufrgs.br:article/5101
network_acronym_str UFRGS-20
network_name_str Clinical and Biomedical Research
repository_id_str
spelling NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic DiseasesSNDDDE: Sistema Neuro-difuso para Auxiliar no Diagnóstico de Doenças EpilépticasEpilepsiaredes neurais artificiaislógica difusaNeurologiaBackground: this research approaches the development of a neuro-fuzzy system to support the diagnosis of epileptic diseases (NFSDED). Neuro-fuzzy systems are the most common type of artificial intelligence in medicine. The neuro-fuzzy system contains medical knowledge represented by rules, gathering the strength of two paradigms: artificial neural networks and fuzzy logic. Objective: the main interest of the research is to examine the applicability of the t-norms and t-conorms fuzzy arithmetical operations, implemented by fuzzy neurons. Results: show that the arithmetical operations of Einstein's Sum/Product AND/OR implemented with the fuzzy neuron proposed by Kwan-Cai obtained the highest rates of system hits, when compared to the min/max arithmetical operationsIntrodução: esta pesquisa aborda o desenvolvimento de um sistema neurodifuso para auxiliar no diagnóstico de doenças epilépticas (SNDDDE). Sistemas neurodifusos representam o tipo mais comum de inteligência artificial na medicina. O sistema neurodifuso contém conhecimento médico representado na forma de regras, unindo a força de dois paradigmas: redes neurais artificiais e lógica difusa. Objetivo: o maior interesse da pesquisa é examinar a aplicabilidade das operações aritméticas difusas t-normas e t-conormas, implementadas através de neurônios difusos. Resultados: os resultados mostram que as operações aritméticas difusas Soma/Produto de Einstein E/OU implementadas com o neurônio difuso proposto por Kwan-Cai obtiveram os melhores índices de acertos do sistema quando comparadas com as operações aritméticas padrões máx/mín.HCPA/FAMED/UFRGS2009-01-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed ArticleAvaliado por Paresapplication/pdfhttps://seer.ufrgs.br/index.php/hcpa/article/view/5101Clinical & Biomedical Research; Vol. 28 No. 3 (2008): Revista HCPAClinical and Biomedical Research; v. 28 n. 3 (2008): Revista HCPA2357-9730reponame:Clinical and Biomedical Researchinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSporhttps://seer.ufrgs.br/index.php/hcpa/article/view/5101/4600Carvalho, Lucimar Fossatti deCarvalho, Hugo JoséRech, Ciciliana Zílioinfo:eu-repo/semantics/openAccess2020-01-16T16:17:58Zoai:seer.ufrgs.br:article/5101Revistahttps://www.seer.ufrgs.br/index.php/hcpaPUBhttps://seer.ufrgs.br/index.php/hcpa/oai||cbr@hcpa.edu.br2357-97302357-9730opendoar:2020-01-16T16:17:58Clinical and Biomedical Research - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.none.fl_str_mv NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic Diseases
SNDDDE: Sistema Neuro-difuso para Auxiliar no Diagnóstico de Doenças Epilépticas
title NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic Diseases
spellingShingle NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic Diseases
Carvalho, Lucimar Fossatti de
Epilepsia
redes neurais artificiais
lógica difusa
Neurologia
title_short NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic Diseases
title_full NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic Diseases
title_fullStr NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic Diseases
title_full_unstemmed NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic Diseases
title_sort NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic Diseases
author Carvalho, Lucimar Fossatti de
author_facet Carvalho, Lucimar Fossatti de
Carvalho, Hugo José
Rech, Ciciliana Zílio
author_role author
author2 Carvalho, Hugo José
Rech, Ciciliana Zílio
author2_role author
author
dc.contributor.author.fl_str_mv Carvalho, Lucimar Fossatti de
Carvalho, Hugo José
Rech, Ciciliana Zílio
dc.subject.por.fl_str_mv Epilepsia
redes neurais artificiais
lógica difusa
Neurologia
topic Epilepsia
redes neurais artificiais
lógica difusa
Neurologia
description Background: this research approaches the development of a neuro-fuzzy system to support the diagnosis of epileptic diseases (NFSDED). Neuro-fuzzy systems are the most common type of artificial intelligence in medicine. The neuro-fuzzy system contains medical knowledge represented by rules, gathering the strength of two paradigms: artificial neural networks and fuzzy logic. Objective: the main interest of the research is to examine the applicability of the t-norms and t-conorms fuzzy arithmetical operations, implemented by fuzzy neurons. Results: show that the arithmetical operations of Einstein's Sum/Product AND/OR implemented with the fuzzy neuron proposed by Kwan-Cai obtained the highest rates of system hits, when compared to the min/max arithmetical operations
publishDate 2009
dc.date.none.fl_str_mv 2009-01-15
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
Avaliado por Pares
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.ufrgs.br/index.php/hcpa/article/view/5101
url https://seer.ufrgs.br/index.php/hcpa/article/view/5101
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://seer.ufrgs.br/index.php/hcpa/article/view/5101/4600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv HCPA/FAMED/UFRGS
publisher.none.fl_str_mv HCPA/FAMED/UFRGS
dc.source.none.fl_str_mv Clinical & Biomedical Research; Vol. 28 No. 3 (2008): Revista HCPA
Clinical and Biomedical Research; v. 28 n. 3 (2008): Revista HCPA
2357-9730
reponame:Clinical and Biomedical Research
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Clinical and Biomedical Research
collection Clinical and Biomedical Research
repository.name.fl_str_mv Clinical and Biomedical Research - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv ||cbr@hcpa.edu.br
_version_ 1799767051290542080