NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic Diseases
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Clinical and Biomedical Research |
Texto Completo: | https://seer.ufrgs.br/index.php/hcpa/article/view/5101 |
Resumo: | Background: this research approaches the development of a neuro-fuzzy system to support the diagnosis of epileptic diseases (NFSDED). Neuro-fuzzy systems are the most common type of artificial intelligence in medicine. The neuro-fuzzy system contains medical knowledge represented by rules, gathering the strength of two paradigms: artificial neural networks and fuzzy logic. Objective: the main interest of the research is to examine the applicability of the t-norms and t-conorms fuzzy arithmetical operations, implemented by fuzzy neurons. Results: show that the arithmetical operations of Einstein's Sum/Product AND/OR implemented with the fuzzy neuron proposed by Kwan-Cai obtained the highest rates of system hits, when compared to the min/max arithmetical operations |
id |
UFRGS-20_3d2cc929b1009025d4e328cd8db8cfcd |
---|---|
oai_identifier_str |
oai:seer.ufrgs.br:article/5101 |
network_acronym_str |
UFRGS-20 |
network_name_str |
Clinical and Biomedical Research |
repository_id_str |
|
spelling |
NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic DiseasesSNDDDE: Sistema Neuro-difuso para Auxiliar no Diagnóstico de Doenças EpilépticasEpilepsiaredes neurais artificiaislógica difusaNeurologiaBackground: this research approaches the development of a neuro-fuzzy system to support the diagnosis of epileptic diseases (NFSDED). Neuro-fuzzy systems are the most common type of artificial intelligence in medicine. The neuro-fuzzy system contains medical knowledge represented by rules, gathering the strength of two paradigms: artificial neural networks and fuzzy logic. Objective: the main interest of the research is to examine the applicability of the t-norms and t-conorms fuzzy arithmetical operations, implemented by fuzzy neurons. Results: show that the arithmetical operations of Einstein's Sum/Product AND/OR implemented with the fuzzy neuron proposed by Kwan-Cai obtained the highest rates of system hits, when compared to the min/max arithmetical operationsIntrodução: esta pesquisa aborda o desenvolvimento de um sistema neurodifuso para auxiliar no diagnóstico de doenças epilépticas (SNDDDE). Sistemas neurodifusos representam o tipo mais comum de inteligência artificial na medicina. O sistema neurodifuso contém conhecimento médico representado na forma de regras, unindo a força de dois paradigmas: redes neurais artificiais e lógica difusa. Objetivo: o maior interesse da pesquisa é examinar a aplicabilidade das operações aritméticas difusas t-normas e t-conormas, implementadas através de neurônios difusos. Resultados: os resultados mostram que as operações aritméticas difusas Soma/Produto de Einstein E/OU implementadas com o neurônio difuso proposto por Kwan-Cai obtiveram os melhores índices de acertos do sistema quando comparadas com as operações aritméticas padrões máx/mín.HCPA/FAMED/UFRGS2009-01-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed ArticleAvaliado por Paresapplication/pdfhttps://seer.ufrgs.br/index.php/hcpa/article/view/5101Clinical & Biomedical Research; Vol. 28 No. 3 (2008): Revista HCPAClinical and Biomedical Research; v. 28 n. 3 (2008): Revista HCPA2357-9730reponame:Clinical and Biomedical Researchinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSporhttps://seer.ufrgs.br/index.php/hcpa/article/view/5101/4600Carvalho, Lucimar Fossatti deCarvalho, Hugo JoséRech, Ciciliana Zílioinfo:eu-repo/semantics/openAccess2020-01-16T16:17:58Zoai:seer.ufrgs.br:article/5101Revistahttps://www.seer.ufrgs.br/index.php/hcpaPUBhttps://seer.ufrgs.br/index.php/hcpa/oai||cbr@hcpa.edu.br2357-97302357-9730opendoar:2020-01-16T16:17:58Clinical and Biomedical Research - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.none.fl_str_mv |
NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic Diseases SNDDDE: Sistema Neuro-difuso para Auxiliar no Diagnóstico de Doenças Epilépticas |
title |
NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic Diseases |
spellingShingle |
NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic Diseases Carvalho, Lucimar Fossatti de Epilepsia redes neurais artificiais lógica difusa Neurologia |
title_short |
NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic Diseases |
title_full |
NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic Diseases |
title_fullStr |
NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic Diseases |
title_full_unstemmed |
NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic Diseases |
title_sort |
NFSDED: Neuro-Fuzzy System to Support the Diagnosis of Epileptic Diseases |
author |
Carvalho, Lucimar Fossatti de |
author_facet |
Carvalho, Lucimar Fossatti de Carvalho, Hugo José Rech, Ciciliana Zílio |
author_role |
author |
author2 |
Carvalho, Hugo José Rech, Ciciliana Zílio |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Carvalho, Lucimar Fossatti de Carvalho, Hugo José Rech, Ciciliana Zílio |
dc.subject.por.fl_str_mv |
Epilepsia redes neurais artificiais lógica difusa Neurologia |
topic |
Epilepsia redes neurais artificiais lógica difusa Neurologia |
description |
Background: this research approaches the development of a neuro-fuzzy system to support the diagnosis of epileptic diseases (NFSDED). Neuro-fuzzy systems are the most common type of artificial intelligence in medicine. The neuro-fuzzy system contains medical knowledge represented by rules, gathering the strength of two paradigms: artificial neural networks and fuzzy logic. Objective: the main interest of the research is to examine the applicability of the t-norms and t-conorms fuzzy arithmetical operations, implemented by fuzzy neurons. Results: show that the arithmetical operations of Einstein's Sum/Product AND/OR implemented with the fuzzy neuron proposed by Kwan-Cai obtained the highest rates of system hits, when compared to the min/max arithmetical operations |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-01-15 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed Article Avaliado por Pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.ufrgs.br/index.php/hcpa/article/view/5101 |
url |
https://seer.ufrgs.br/index.php/hcpa/article/view/5101 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://seer.ufrgs.br/index.php/hcpa/article/view/5101/4600 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
HCPA/FAMED/UFRGS |
publisher.none.fl_str_mv |
HCPA/FAMED/UFRGS |
dc.source.none.fl_str_mv |
Clinical & Biomedical Research; Vol. 28 No. 3 (2008): Revista HCPA Clinical and Biomedical Research; v. 28 n. 3 (2008): Revista HCPA 2357-9730 reponame:Clinical and Biomedical Research instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Clinical and Biomedical Research |
collection |
Clinical and Biomedical Research |
repository.name.fl_str_mv |
Clinical and Biomedical Research - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
||cbr@hcpa.edu.br |
_version_ |
1799767051290542080 |