Statistical learning approaches for discriminant features selection

Detalhes bibliográficos
Autor(a) principal: Giraldi,Gilson A.
Data de Publicação: 2008
Outros Autores: Rodrigues,Paulo S., Kitani,Edson C., Sato,João R., Thomaz,Carlos E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Computer Society
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002008000200002
Resumo: Supervised statistical learning covers important models like Support Vector Machines (SVM) and Linear Discriminant Analysis (LDA). In this paper we describe the idea of using the discriminant weights given by SVM and LDA separating hyperplanes to select the most discriminant features to separate sample groups. Our method, called here as Discriminant Feature Analysis (DFA), is not restricted to any particular probability density function and the number of meaningful discriminant features is not limited to the number of groups. To evaluate the discriminant features selected, two case studies have been investigated using face images and breast lesion data sets. In both case studies, our experimental results show that the DFA approach provides an intuitive interpretation of the differences between the groups, highlighting and reconstructing the most important statistical changes between the sample groups analyzed.
id UFRGS-28_23a3e44a6b5b80530294bd87ce534b63
oai_identifier_str oai:scielo:S0104-65002008000200002
network_acronym_str UFRGS-28
network_name_str Journal of the Brazilian Computer Society
repository_id_str
spelling Statistical learning approaches for discriminant features selectionSupervised statistical learningDiscriminant features selectionSeparating hyperplanesSupervised statistical learning covers important models like Support Vector Machines (SVM) and Linear Discriminant Analysis (LDA). In this paper we describe the idea of using the discriminant weights given by SVM and LDA separating hyperplanes to select the most discriminant features to separate sample groups. Our method, called here as Discriminant Feature Analysis (DFA), is not restricted to any particular probability density function and the number of meaningful discriminant features is not limited to the number of groups. To evaluate the discriminant features selected, two case studies have been investigated using face images and breast lesion data sets. In both case studies, our experimental results show that the DFA approach provides an intuitive interpretation of the differences between the groups, highlighting and reconstructing the most important statistical changes between the sample groups analyzed.Sociedade Brasileira de Computação2008-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002008000200002Journal of the Brazilian Computer Society v.14 n.2 2008reponame:Journal of the Brazilian Computer Societyinstname:Sociedade Brasileira de Computação (SBC)instacron:UFRGS10.1007/BF03192556info:eu-repo/semantics/openAccessGiraldi,Gilson A.Rodrigues,Paulo S.Kitani,Edson C.Sato,João R.Thomaz,Carlos E.eng2008-10-24T00:00:00Zoai:scielo:S0104-65002008000200002Revistahttps://journal-bcs.springeropen.com/PUBhttps://old.scielo.br/oai/scielo-oai.phpjbcs@icmc.sc.usp.br1678-48040104-6500opendoar:2008-10-24T00:00Journal of the Brazilian Computer Society - Sociedade Brasileira de Computação (SBC)false
dc.title.none.fl_str_mv Statistical learning approaches for discriminant features selection
title Statistical learning approaches for discriminant features selection
spellingShingle Statistical learning approaches for discriminant features selection
Giraldi,Gilson A.
Supervised statistical learning
Discriminant features selection
Separating hyperplanes
title_short Statistical learning approaches for discriminant features selection
title_full Statistical learning approaches for discriminant features selection
title_fullStr Statistical learning approaches for discriminant features selection
title_full_unstemmed Statistical learning approaches for discriminant features selection
title_sort Statistical learning approaches for discriminant features selection
author Giraldi,Gilson A.
author_facet Giraldi,Gilson A.
Rodrigues,Paulo S.
Kitani,Edson C.
Sato,João R.
Thomaz,Carlos E.
author_role author
author2 Rodrigues,Paulo S.
Kitani,Edson C.
Sato,João R.
Thomaz,Carlos E.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Giraldi,Gilson A.
Rodrigues,Paulo S.
Kitani,Edson C.
Sato,João R.
Thomaz,Carlos E.
dc.subject.por.fl_str_mv Supervised statistical learning
Discriminant features selection
Separating hyperplanes
topic Supervised statistical learning
Discriminant features selection
Separating hyperplanes
description Supervised statistical learning covers important models like Support Vector Machines (SVM) and Linear Discriminant Analysis (LDA). In this paper we describe the idea of using the discriminant weights given by SVM and LDA separating hyperplanes to select the most discriminant features to separate sample groups. Our method, called here as Discriminant Feature Analysis (DFA), is not restricted to any particular probability density function and the number of meaningful discriminant features is not limited to the number of groups. To evaluate the discriminant features selected, two case studies have been investigated using face images and breast lesion data sets. In both case studies, our experimental results show that the DFA approach provides an intuitive interpretation of the differences between the groups, highlighting and reconstructing the most important statistical changes between the sample groups analyzed.
publishDate 2008
dc.date.none.fl_str_mv 2008-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002008000200002
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002008000200002
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1007/BF03192556
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Computação
publisher.none.fl_str_mv Sociedade Brasileira de Computação
dc.source.none.fl_str_mv Journal of the Brazilian Computer Society v.14 n.2 2008
reponame:Journal of the Brazilian Computer Society
instname:Sociedade Brasileira de Computação (SBC)
instacron:UFRGS
instname_str Sociedade Brasileira de Computação (SBC)
instacron_str UFRGS
institution UFRGS
reponame_str Journal of the Brazilian Computer Society
collection Journal of the Brazilian Computer Society
repository.name.fl_str_mv Journal of the Brazilian Computer Society - Sociedade Brasileira de Computação (SBC)
repository.mail.fl_str_mv jbcs@icmc.sc.usp.br
_version_ 1754734669966868480