Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp.

Detalhes bibliográficos
Autor(a) principal: Lopes, William
Data de Publicação: 2020
Outros Autores: Cruz, Giuliano Netto Flores, Rodrigues, Márcio L., Vainstein, Mendeli Henning, Silva, Lívia Kmetzsch Rosa e, Staats, Charley Christian, Vainstein, Marilene Henning, Schrank, Augusto
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/233103
Resumo: Phenotypic heterogeneity is an important trait for the development and survival of many microorganisms including the yeast Cryptococcus spp., a deadly pathogen spread worldwide. Here, we have applied scanning electron microscopy (SEM) to defne four Cryptococcus spp. capsule morphotypes, namely Regular, Spiky, Bald, and Phantom. These morphotypes were persistently observed in varying proportions among yeast isolates. To assess the distribution of such morphotypes we implemented an automated pipeline capable of (1) identifying potentially cell-associated objects in the SEM-derived images; (2) computing object-level features; and (3) classifying these objects into their corresponding classes. The machine learning approach used a Random Forest (RF) classifer whose overall accuracy reached 85% on the test dataset, with per-class specifcity above 90%, and sensitivity between 66 and 94%. Additionally, the RF model indicates that structural and texture features, e.g., object area, eccentricity, and contrast, are most relevant for classifcation. The RF results agree with the observed variation in these features, consistently also with visual inspection of SEM images. Finally, our work introduces morphological variants of Cryptococcus spp. capsule. These can be promptly identifed and characterized using computational models so that future work may unveil morphological associations with yeast virulence.
id UFRGS-2_04c64fbee87a5c63cba8d0f3d6ebffba
oai_identifier_str oai:www.lume.ufrgs.br:10183/233103
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Lopes, WilliamCruz, Giuliano Netto FloresRodrigues, Márcio L.Vainstein, Mendeli HenningSilva, Lívia Kmetzsch Rosa eStaats, Charley ChristianVainstein, Marilene HenningSchrank, Augusto2021-12-17T04:31:04Z20202045-2322http://hdl.handle.net/10183/233103001128385Phenotypic heterogeneity is an important trait for the development and survival of many microorganisms including the yeast Cryptococcus spp., a deadly pathogen spread worldwide. Here, we have applied scanning electron microscopy (SEM) to defne four Cryptococcus spp. capsule morphotypes, namely Regular, Spiky, Bald, and Phantom. These morphotypes were persistently observed in varying proportions among yeast isolates. To assess the distribution of such morphotypes we implemented an automated pipeline capable of (1) identifying potentially cell-associated objects in the SEM-derived images; (2) computing object-level features; and (3) classifying these objects into their corresponding classes. The machine learning approach used a Random Forest (RF) classifer whose overall accuracy reached 85% on the test dataset, with per-class specifcity above 90%, and sensitivity between 66 and 94%. Additionally, the RF model indicates that structural and texture features, e.g., object area, eccentricity, and contrast, are most relevant for classifcation. The RF results agree with the observed variation in these features, consistently also with visual inspection of SEM images. Finally, our work introduces morphological variants of Cryptococcus spp. capsule. These can be promptly identifed and characterized using computational models so that future work may unveil morphological associations with yeast virulence.application/pdfengScientific reports. London. Vol. 10 (Feb. 2020), 2362, 11 p.PatógenoMicroorganismoMicroscopia eletrônica de varreduraCryptococcusScanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp.Estrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001128385.pdf.txt001128385.pdf.txtExtracted Texttext/plain43113http://www.lume.ufrgs.br/bitstream/10183/233103/2/001128385.pdf.txt79da8ad7eb07489e7d067dbc3deb6024MD52ORIGINAL001128385.pdfTexto completo (inglês)application/pdf4669903http://www.lume.ufrgs.br/bitstream/10183/233103/1/001128385.pdfcd1d93312b5aaa78c9fa64318faa30b2MD5110183/2331032024-03-28 06:25:59.511781oai:www.lume.ufrgs.br:10183/233103Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-03-28T09:25:59Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp.
title Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp.
spellingShingle Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp.
Lopes, William
Patógeno
Microorganismo
Microscopia eletrônica de varredura
Cryptococcus
title_short Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp.
title_full Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp.
title_fullStr Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp.
title_full_unstemmed Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp.
title_sort Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp.
author Lopes, William
author_facet Lopes, William
Cruz, Giuliano Netto Flores
Rodrigues, Márcio L.
Vainstein, Mendeli Henning
Silva, Lívia Kmetzsch Rosa e
Staats, Charley Christian
Vainstein, Marilene Henning
Schrank, Augusto
author_role author
author2 Cruz, Giuliano Netto Flores
Rodrigues, Márcio L.
Vainstein, Mendeli Henning
Silva, Lívia Kmetzsch Rosa e
Staats, Charley Christian
Vainstein, Marilene Henning
Schrank, Augusto
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Lopes, William
Cruz, Giuliano Netto Flores
Rodrigues, Márcio L.
Vainstein, Mendeli Henning
Silva, Lívia Kmetzsch Rosa e
Staats, Charley Christian
Vainstein, Marilene Henning
Schrank, Augusto
dc.subject.por.fl_str_mv Patógeno
Microorganismo
Microscopia eletrônica de varredura
Cryptococcus
topic Patógeno
Microorganismo
Microscopia eletrônica de varredura
Cryptococcus
description Phenotypic heterogeneity is an important trait for the development and survival of many microorganisms including the yeast Cryptococcus spp., a deadly pathogen spread worldwide. Here, we have applied scanning electron microscopy (SEM) to defne four Cryptococcus spp. capsule morphotypes, namely Regular, Spiky, Bald, and Phantom. These morphotypes were persistently observed in varying proportions among yeast isolates. To assess the distribution of such morphotypes we implemented an automated pipeline capable of (1) identifying potentially cell-associated objects in the SEM-derived images; (2) computing object-level features; and (3) classifying these objects into their corresponding classes. The machine learning approach used a Random Forest (RF) classifer whose overall accuracy reached 85% on the test dataset, with per-class specifcity above 90%, and sensitivity between 66 and 94%. Additionally, the RF model indicates that structural and texture features, e.g., object area, eccentricity, and contrast, are most relevant for classifcation. The RF results agree with the observed variation in these features, consistently also with visual inspection of SEM images. Finally, our work introduces morphological variants of Cryptococcus spp. capsule. These can be promptly identifed and characterized using computational models so that future work may unveil morphological associations with yeast virulence.
publishDate 2020
dc.date.issued.fl_str_mv 2020
dc.date.accessioned.fl_str_mv 2021-12-17T04:31:04Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/233103
dc.identifier.issn.pt_BR.fl_str_mv 2045-2322
dc.identifier.nrb.pt_BR.fl_str_mv 001128385
identifier_str_mv 2045-2322
001128385
url http://hdl.handle.net/10183/233103
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Scientific reports. London. Vol. 10 (Feb. 2020), 2362, 11 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/233103/2/001128385.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/233103/1/001128385.pdf
bitstream.checksum.fl_str_mv 79da8ad7eb07489e7d067dbc3deb6024
cd1d93312b5aaa78c9fa64318faa30b2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447778150580224