Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/233103 |
Resumo: | Phenotypic heterogeneity is an important trait for the development and survival of many microorganisms including the yeast Cryptococcus spp., a deadly pathogen spread worldwide. Here, we have applied scanning electron microscopy (SEM) to defne four Cryptococcus spp. capsule morphotypes, namely Regular, Spiky, Bald, and Phantom. These morphotypes were persistently observed in varying proportions among yeast isolates. To assess the distribution of such morphotypes we implemented an automated pipeline capable of (1) identifying potentially cell-associated objects in the SEM-derived images; (2) computing object-level features; and (3) classifying these objects into their corresponding classes. The machine learning approach used a Random Forest (RF) classifer whose overall accuracy reached 85% on the test dataset, with per-class specifcity above 90%, and sensitivity between 66 and 94%. Additionally, the RF model indicates that structural and texture features, e.g., object area, eccentricity, and contrast, are most relevant for classifcation. The RF results agree with the observed variation in these features, consistently also with visual inspection of SEM images. Finally, our work introduces morphological variants of Cryptococcus spp. capsule. These can be promptly identifed and characterized using computational models so that future work may unveil morphological associations with yeast virulence. |
id |
UFRGS-2_04c64fbee87a5c63cba8d0f3d6ebffba |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/233103 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Lopes, WilliamCruz, Giuliano Netto FloresRodrigues, Márcio L.Vainstein, Mendeli HenningSilva, Lívia Kmetzsch Rosa eStaats, Charley ChristianVainstein, Marilene HenningSchrank, Augusto2021-12-17T04:31:04Z20202045-2322http://hdl.handle.net/10183/233103001128385Phenotypic heterogeneity is an important trait for the development and survival of many microorganisms including the yeast Cryptococcus spp., a deadly pathogen spread worldwide. Here, we have applied scanning electron microscopy (SEM) to defne four Cryptococcus spp. capsule morphotypes, namely Regular, Spiky, Bald, and Phantom. These morphotypes were persistently observed in varying proportions among yeast isolates. To assess the distribution of such morphotypes we implemented an automated pipeline capable of (1) identifying potentially cell-associated objects in the SEM-derived images; (2) computing object-level features; and (3) classifying these objects into their corresponding classes. The machine learning approach used a Random Forest (RF) classifer whose overall accuracy reached 85% on the test dataset, with per-class specifcity above 90%, and sensitivity between 66 and 94%. Additionally, the RF model indicates that structural and texture features, e.g., object area, eccentricity, and contrast, are most relevant for classifcation. The RF results agree with the observed variation in these features, consistently also with visual inspection of SEM images. Finally, our work introduces morphological variants of Cryptococcus spp. capsule. These can be promptly identifed and characterized using computational models so that future work may unveil morphological associations with yeast virulence.application/pdfengScientific reports. London. Vol. 10 (Feb. 2020), 2362, 11 p.PatógenoMicroorganismoMicroscopia eletrônica de varreduraCryptococcusScanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp.Estrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001128385.pdf.txt001128385.pdf.txtExtracted Texttext/plain43113http://www.lume.ufrgs.br/bitstream/10183/233103/2/001128385.pdf.txt79da8ad7eb07489e7d067dbc3deb6024MD52ORIGINAL001128385.pdfTexto completo (inglês)application/pdf4669903http://www.lume.ufrgs.br/bitstream/10183/233103/1/001128385.pdfcd1d93312b5aaa78c9fa64318faa30b2MD5110183/2331032024-03-28 06:25:59.511781oai:www.lume.ufrgs.br:10183/233103Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-03-28T09:25:59Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp. |
title |
Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp. |
spellingShingle |
Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp. Lopes, William Patógeno Microorganismo Microscopia eletrônica de varredura Cryptococcus |
title_short |
Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp. |
title_full |
Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp. |
title_fullStr |
Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp. |
title_full_unstemmed |
Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp. |
title_sort |
Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp. |
author |
Lopes, William |
author_facet |
Lopes, William Cruz, Giuliano Netto Flores Rodrigues, Márcio L. Vainstein, Mendeli Henning Silva, Lívia Kmetzsch Rosa e Staats, Charley Christian Vainstein, Marilene Henning Schrank, Augusto |
author_role |
author |
author2 |
Cruz, Giuliano Netto Flores Rodrigues, Márcio L. Vainstein, Mendeli Henning Silva, Lívia Kmetzsch Rosa e Staats, Charley Christian Vainstein, Marilene Henning Schrank, Augusto |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Lopes, William Cruz, Giuliano Netto Flores Rodrigues, Márcio L. Vainstein, Mendeli Henning Silva, Lívia Kmetzsch Rosa e Staats, Charley Christian Vainstein, Marilene Henning Schrank, Augusto |
dc.subject.por.fl_str_mv |
Patógeno Microorganismo Microscopia eletrônica de varredura Cryptococcus |
topic |
Patógeno Microorganismo Microscopia eletrônica de varredura Cryptococcus |
description |
Phenotypic heterogeneity is an important trait for the development and survival of many microorganisms including the yeast Cryptococcus spp., a deadly pathogen spread worldwide. Here, we have applied scanning electron microscopy (SEM) to defne four Cryptococcus spp. capsule morphotypes, namely Regular, Spiky, Bald, and Phantom. These morphotypes were persistently observed in varying proportions among yeast isolates. To assess the distribution of such morphotypes we implemented an automated pipeline capable of (1) identifying potentially cell-associated objects in the SEM-derived images; (2) computing object-level features; and (3) classifying these objects into their corresponding classes. The machine learning approach used a Random Forest (RF) classifer whose overall accuracy reached 85% on the test dataset, with per-class specifcity above 90%, and sensitivity between 66 and 94%. Additionally, the RF model indicates that structural and texture features, e.g., object area, eccentricity, and contrast, are most relevant for classifcation. The RF results agree with the observed variation in these features, consistently also with visual inspection of SEM images. Finally, our work introduces morphological variants of Cryptococcus spp. capsule. These can be promptly identifed and characterized using computational models so that future work may unveil morphological associations with yeast virulence. |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020 |
dc.date.accessioned.fl_str_mv |
2021-12-17T04:31:04Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/233103 |
dc.identifier.issn.pt_BR.fl_str_mv |
2045-2322 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001128385 |
identifier_str_mv |
2045-2322 001128385 |
url |
http://hdl.handle.net/10183/233103 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Scientific reports. London. Vol. 10 (Feb. 2020), 2362, 11 p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/233103/2/001128385.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/233103/1/001128385.pdf |
bitstream.checksum.fl_str_mv |
79da8ad7eb07489e7d067dbc3deb6024 cd1d93312b5aaa78c9fa64318faa30b2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447778150580224 |