Protocol designs for NOON states

Detalhes bibliográficos
Autor(a) principal: Grün, Daniel Schneider
Data de Publicação: 2022
Outros Autores: Wilsmann, Karin Wittmann, Ymai, Leandro Hayato, Links, Jon, Foerster, Angela
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/237121
Resumo: The ability to reliably prepare non-classical states will play a major role in the realization of quantum technology. NOON states, belonging to the class of Schrödinger cat states, have emerged as a leading candidate for several applications. Here we show how to generate NOON states in a model of dipolar bosons confined to a closed circuit of four sites. This is achieved by designing protocols to transform initial Fock states to NOON states through use of time evolution, application of an external field, and local projective measurements. The evolution time is independent of total particle number, offering an encouraging prospect for scalability. By variation of the external field strength, we demonstrate how the system can be controlled to encode a phase into a NOON state. We also discuss the physical feasibility, via ultracold dipolar atoms in an optical superlattice setup. Our proposal showcases the benefits of quantum integrable systems in the design of protocols.
id UFRGS-2_1533a722a9fdf4692ed9d9e6385adb44
oai_identifier_str oai:www.lume.ufrgs.br:10183/237121
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Grün, Daniel SchneiderWilsmann, Karin WittmannYmai, Leandro HayatoLinks, JonFoerster, Angela2022-04-13T04:51:13Z20222399-3650http://hdl.handle.net/10183/237121001138205The ability to reliably prepare non-classical states will play a major role in the realization of quantum technology. NOON states, belonging to the class of Schrödinger cat states, have emerged as a leading candidate for several applications. Here we show how to generate NOON states in a model of dipolar bosons confined to a closed circuit of four sites. This is achieved by designing protocols to transform initial Fock states to NOON states through use of time evolution, application of an external field, and local projective measurements. The evolution time is independent of total particle number, offering an encouraging prospect for scalability. By variation of the external field strength, we demonstrate how the system can be controlled to encode a phase into a NOON state. We also discuss the physical feasibility, via ultracold dipolar atoms in an optical superlattice setup. Our proposal showcases the benefits of quantum integrable systems in the design of protocols.application/pdfporCommunications Physics. London. Vol. 5, (2022), 36, 7 p.BosonsSistemas quanticosProtocol designs for NOON statesEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001138205.pdf.txt001138205.pdf.txtExtracted Texttext/plain42569http://www.lume.ufrgs.br/bitstream/10183/237121/2/001138205.pdf.txt7eb12ddc1a2def2656453ebf24825b49MD52ORIGINAL001138205.pdfTexto completo (inglês)application/pdf1589123http://www.lume.ufrgs.br/bitstream/10183/237121/1/001138205.pdf176a9fd6b6fc1e0890a555b452c67501MD5110183/2371212023-06-24 03:37:12.542525oai:www.lume.ufrgs.br:10183/237121Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-06-24T06:37:12Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Protocol designs for NOON states
title Protocol designs for NOON states
spellingShingle Protocol designs for NOON states
Grün, Daniel Schneider
Bosons
Sistemas quanticos
title_short Protocol designs for NOON states
title_full Protocol designs for NOON states
title_fullStr Protocol designs for NOON states
title_full_unstemmed Protocol designs for NOON states
title_sort Protocol designs for NOON states
author Grün, Daniel Schneider
author_facet Grün, Daniel Schneider
Wilsmann, Karin Wittmann
Ymai, Leandro Hayato
Links, Jon
Foerster, Angela
author_role author
author2 Wilsmann, Karin Wittmann
Ymai, Leandro Hayato
Links, Jon
Foerster, Angela
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Grün, Daniel Schneider
Wilsmann, Karin Wittmann
Ymai, Leandro Hayato
Links, Jon
Foerster, Angela
dc.subject.por.fl_str_mv Bosons
Sistemas quanticos
topic Bosons
Sistemas quanticos
description The ability to reliably prepare non-classical states will play a major role in the realization of quantum technology. NOON states, belonging to the class of Schrödinger cat states, have emerged as a leading candidate for several applications. Here we show how to generate NOON states in a model of dipolar bosons confined to a closed circuit of four sites. This is achieved by designing protocols to transform initial Fock states to NOON states through use of time evolution, application of an external field, and local projective measurements. The evolution time is independent of total particle number, offering an encouraging prospect for scalability. By variation of the external field strength, we demonstrate how the system can be controlled to encode a phase into a NOON state. We also discuss the physical feasibility, via ultracold dipolar atoms in an optical superlattice setup. Our proposal showcases the benefits of quantum integrable systems in the design of protocols.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-04-13T04:51:13Z
dc.date.issued.fl_str_mv 2022
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/237121
dc.identifier.issn.pt_BR.fl_str_mv 2399-3650
dc.identifier.nrb.pt_BR.fl_str_mv 001138205
identifier_str_mv 2399-3650
001138205
url http://hdl.handle.net/10183/237121
dc.language.iso.fl_str_mv por
language por
dc.relation.ispartof.pt_BR.fl_str_mv Communications Physics. London. Vol. 5, (2022), 36, 7 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/237121/2/001138205.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/237121/1/001138205.pdf
bitstream.checksum.fl_str_mv 7eb12ddc1a2def2656453ebf24825b49
176a9fd6b6fc1e0890a555b452c67501
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1801225053944152064