Simplified periodic anderson model : exact solution in infinite dimensions

Detalhes bibliográficos
Autor(a) principal: Consiglio, Roberto
Data de Publicação: 1997
Outros Autores: Gusmao, Miguel Angelo Cavalheiro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/104221
Resumo: We present a diagrammatic perturbative treatment of the hybridization for the periodic Anderson model that recovers the dynamical mean-field equations in the limit of infinite dimensions. The resulting effective singlesite problem is naturally addressed by perturbation theory on the dynamical mean field. We introduce a simplified version of the model in which only electrons with a given spin orientation hybridize. The perturbation series can be summed in this case, yielding an exact solution for the single-particle Green’s functions. Electronic and transport properties are analyzed, showing the existence of a metallic regime with non-Fermiliquid behavior.
id UFRGS-2_2bfe585e45b3e4498d9f4db15c6ff267
oai_identifier_str oai:www.lume.ufrgs.br:10183/104221
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Consiglio, RobertoGusmao, Miguel Angelo Cavalheiro2014-10-07T02:11:23Z19970163-1829http://hdl.handle.net/10183/104221000188543We present a diagrammatic perturbative treatment of the hybridization for the periodic Anderson model that recovers the dynamical mean-field equations in the limit of infinite dimensions. The resulting effective singlesite problem is naturally addressed by perturbation theory on the dynamical mean field. We introduce a simplified version of the model in which only electrons with a given spin orientation hybridize. The perturbation series can be summed in this case, yielding an exact solution for the single-particle Green’s functions. Electronic and transport properties are analyzed, showing the existence of a metallic regime with non-Fermiliquid behavior.application/pdfengPhysical review. B, Condensed matter. New York. Vol. 55, no. 11 (Mar. 1997), p. 6825-6831Física da matéria condensadaModelo de AndersonSimplified periodic anderson model : exact solution in infinite dimensionsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000188543.pdf000188543.pdfTexto completo (inglês)application/pdf119621http://www.lume.ufrgs.br/bitstream/10183/104221/1/000188543.pdf7272ccec50d33483090994915fb45433MD51TEXT000188543.pdf.txt000188543.pdf.txtExtracted Texttext/plain30042http://www.lume.ufrgs.br/bitstream/10183/104221/2/000188543.pdf.txt93501b77bbadb673b0bf09ec3428c4c8MD5210183/1042212018-06-07 02:32:21.263642oai:www.lume.ufrgs.br:10183/104221Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2018-06-07T05:32:21Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Simplified periodic anderson model : exact solution in infinite dimensions
title Simplified periodic anderson model : exact solution in infinite dimensions
spellingShingle Simplified periodic anderson model : exact solution in infinite dimensions
Consiglio, Roberto
Física da matéria condensada
Modelo de Anderson
title_short Simplified periodic anderson model : exact solution in infinite dimensions
title_full Simplified periodic anderson model : exact solution in infinite dimensions
title_fullStr Simplified periodic anderson model : exact solution in infinite dimensions
title_full_unstemmed Simplified periodic anderson model : exact solution in infinite dimensions
title_sort Simplified periodic anderson model : exact solution in infinite dimensions
author Consiglio, Roberto
author_facet Consiglio, Roberto
Gusmao, Miguel Angelo Cavalheiro
author_role author
author2 Gusmao, Miguel Angelo Cavalheiro
author2_role author
dc.contributor.author.fl_str_mv Consiglio, Roberto
Gusmao, Miguel Angelo Cavalheiro
dc.subject.por.fl_str_mv Física da matéria condensada
Modelo de Anderson
topic Física da matéria condensada
Modelo de Anderson
description We present a diagrammatic perturbative treatment of the hybridization for the periodic Anderson model that recovers the dynamical mean-field equations in the limit of infinite dimensions. The resulting effective singlesite problem is naturally addressed by perturbation theory on the dynamical mean field. We introduce a simplified version of the model in which only electrons with a given spin orientation hybridize. The perturbation series can be summed in this case, yielding an exact solution for the single-particle Green’s functions. Electronic and transport properties are analyzed, showing the existence of a metallic regime with non-Fermiliquid behavior.
publishDate 1997
dc.date.issued.fl_str_mv 1997
dc.date.accessioned.fl_str_mv 2014-10-07T02:11:23Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/104221
dc.identifier.issn.pt_BR.fl_str_mv 0163-1829
dc.identifier.nrb.pt_BR.fl_str_mv 000188543
identifier_str_mv 0163-1829
000188543
url http://hdl.handle.net/10183/104221
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical review. B, Condensed matter. New York. Vol. 55, no. 11 (Mar. 1997), p. 6825-6831
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/104221/1/000188543.pdf
http://www.lume.ufrgs.br/bitstream/10183/104221/2/000188543.pdf.txt
bitstream.checksum.fl_str_mv 7272ccec50d33483090994915fb45433
93501b77bbadb673b0bf09ec3428c4c8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447561904848896