Cumulant expansion of the periodic Anderson model : general derivation

Detalhes bibliográficos
Autor(a) principal: Figueira, M.S.
Data de Publicação: 1994
Outros Autores: Foglio, M.E., Martinez Pino, Gerardo Guido
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/104226
Resumo: We extend to the periodic Anderson model (PAM) the diagrammatic expansion in cumulants that was employed by Hubbard to study his model of a narrow band of strongly correlated electrons. The PAM is a lattice of localized and strongly correlated electrons with spin one-half and without orbital degeneracy, hybridized with a wide band of uncorrelated conduction electrons. We have extended the model by considering localized electronic states with an arbitrary scheme of energy levels: this extension would be useful to study intermediate valence compounds of Eu or Tm with the present formalism. We give the rules for the diagrammatic. Calculation of the grand canonical potential and of the Green's functions for the general model: only connected diagrams appear in those calculations and the lattice sums are unrestricted. To generate the cumulant averages it was necessary to employ externai fields ξ that are Grassmann variables. We liave found a simple way to extend the diagrammatic rules to the ξ f ≠ O case. The absence of excluded site restrictions, that leads to complicated excluded volume problems in other treatments, and the existence of linked cluster expansions, are features of the cumulant expansion. As an application of the present method, we have calculated the occupation numbers of localized and conduction electrons for the PAM in the limit of infinite Coulomb repulsion (U →∞).
id UFRGS-2_34cc38b04d6be9a8b6008eb5f878fb30
oai_identifier_str oai:www.lume.ufrgs.br:10183/104226
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Figueira, M.S.Foglio, M.E.Martinez Pino, Gerardo Guido2014-10-07T02:11:27Z19940163-1829http://hdl.handle.net/10183/104226000256564We extend to the periodic Anderson model (PAM) the diagrammatic expansion in cumulants that was employed by Hubbard to study his model of a narrow band of strongly correlated electrons. The PAM is a lattice of localized and strongly correlated electrons with spin one-half and without orbital degeneracy, hybridized with a wide band of uncorrelated conduction electrons. We have extended the model by considering localized electronic states with an arbitrary scheme of energy levels: this extension would be useful to study intermediate valence compounds of Eu or Tm with the present formalism. We give the rules for the diagrammatic. Calculation of the grand canonical potential and of the Green's functions for the general model: only connected diagrams appear in those calculations and the lattice sums are unrestricted. To generate the cumulant averages it was necessary to employ externai fields ξ that are Grassmann variables. We liave found a simple way to extend the diagrammatic rules to the ξ f ≠ O case. The absence of excluded site restrictions, that leads to complicated excluded volume problems in other treatments, and the existence of linked cluster expansions, are features of the cumulant expansion. As an application of the present method, we have calculated the occupation numbers of localized and conduction electrons for the PAM in the limit of infinite Coulomb repulsion (U →∞).application/pdfengPhysical review. B, Condensed matter. New York. Vol. 50, no. 24 (Dec. 1994), p. 17933-17952Física da matéria condensadaModelo de AndersonMetodos de funcoes de greenSistemas eletronicos fortemente correlacionadosEfeito kondoCumulant expansion of the periodic Anderson model : general derivationEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000256564.pdf000256564.pdfTexto completo (inglês)application/pdf2870393http://www.lume.ufrgs.br/bitstream/10183/104226/1/000256564.pdf9b1221c7f953073a2f9fc264afed2f1aMD51TEXT000256564.pdf.txt000256564.pdf.txtExtracted Texttext/plain90792http://www.lume.ufrgs.br/bitstream/10183/104226/2/000256564.pdf.txte237e6a81f9344b92491b6f465dee5bbMD5210183/1042262018-06-07 02:32:31.670687oai:www.lume.ufrgs.br:10183/104226Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2018-06-07T05:32:31Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Cumulant expansion of the periodic Anderson model : general derivation
title Cumulant expansion of the periodic Anderson model : general derivation
spellingShingle Cumulant expansion of the periodic Anderson model : general derivation
Figueira, M.S.
Física da matéria condensada
Modelo de Anderson
Metodos de funcoes de green
Sistemas eletronicos fortemente correlacionados
Efeito kondo
title_short Cumulant expansion of the periodic Anderson model : general derivation
title_full Cumulant expansion of the periodic Anderson model : general derivation
title_fullStr Cumulant expansion of the periodic Anderson model : general derivation
title_full_unstemmed Cumulant expansion of the periodic Anderson model : general derivation
title_sort Cumulant expansion of the periodic Anderson model : general derivation
author Figueira, M.S.
author_facet Figueira, M.S.
Foglio, M.E.
Martinez Pino, Gerardo Guido
author_role author
author2 Foglio, M.E.
Martinez Pino, Gerardo Guido
author2_role author
author
dc.contributor.author.fl_str_mv Figueira, M.S.
Foglio, M.E.
Martinez Pino, Gerardo Guido
dc.subject.por.fl_str_mv Física da matéria condensada
Modelo de Anderson
Metodos de funcoes de green
Sistemas eletronicos fortemente correlacionados
Efeito kondo
topic Física da matéria condensada
Modelo de Anderson
Metodos de funcoes de green
Sistemas eletronicos fortemente correlacionados
Efeito kondo
description We extend to the periodic Anderson model (PAM) the diagrammatic expansion in cumulants that was employed by Hubbard to study his model of a narrow band of strongly correlated electrons. The PAM is a lattice of localized and strongly correlated electrons with spin one-half and without orbital degeneracy, hybridized with a wide band of uncorrelated conduction electrons. We have extended the model by considering localized electronic states with an arbitrary scheme of energy levels: this extension would be useful to study intermediate valence compounds of Eu or Tm with the present formalism. We give the rules for the diagrammatic. Calculation of the grand canonical potential and of the Green's functions for the general model: only connected diagrams appear in those calculations and the lattice sums are unrestricted. To generate the cumulant averages it was necessary to employ externai fields ξ that are Grassmann variables. We liave found a simple way to extend the diagrammatic rules to the ξ f ≠ O case. The absence of excluded site restrictions, that leads to complicated excluded volume problems in other treatments, and the existence of linked cluster expansions, are features of the cumulant expansion. As an application of the present method, we have calculated the occupation numbers of localized and conduction electrons for the PAM in the limit of infinite Coulomb repulsion (U →∞).
publishDate 1994
dc.date.issued.fl_str_mv 1994
dc.date.accessioned.fl_str_mv 2014-10-07T02:11:27Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/104226
dc.identifier.issn.pt_BR.fl_str_mv 0163-1829
dc.identifier.nrb.pt_BR.fl_str_mv 000256564
identifier_str_mv 0163-1829
000256564
url http://hdl.handle.net/10183/104226
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical review. B, Condensed matter. New York. Vol. 50, no. 24 (Dec. 1994), p. 17933-17952
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/104226/1/000256564.pdf
http://www.lume.ufrgs.br/bitstream/10183/104226/2/000256564.pdf.txt
bitstream.checksum.fl_str_mv 9b1221c7f953073a2f9fc264afed2f1a
e237e6a81f9344b92491b6f465dee5bb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447561913237504