Open billiards : cantor sets, invariant and conditionally invariant probabilities
Autor(a) principal: | |
---|---|
Data de Publicação: | 1994 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/205086 |
Resumo: | A b stract - Billiards are the simplest models fur nudcrstanding statistical properties of thc dynamics of a gas in a closed compartment. vVc analyze the dynamics of a class of billiards (the open billiard on the plane) in terms of iuva.riant and conditionally inva.riant proba.bilities. The dynamical system has a horse-shoe structure. The stable and unstable manifolds are analytically described. The natural probability J.L is invariant and has support in a Cantor set. This probability is the conditiona.l limit of a conditiona.l probability J.LF that has a Holder continuous density with respcct to the Lebesgue measure. A formula relating entropy, Liapunov exponent and Hausdorff dimcnsion of a natural probability J.L for the system is presented. The natural probability fl is a Gibbs state of a potcntial 'lj; ( cohomologous to the potential associated to the positive Liapunov exponent, see formula (0.1 )), and we show that for a dense set of such billiards the potential 'lj; is not lattice. As the system has a horse-shoe structure one can compute the asymptotic growth rate of n(1·), the number of closed trajectories with the largest eigcuvalue of the derivative smaller tKru1 .r. |
id |
UFRGS-2_48ee9b513de50e2df0d228ce7bacdf5c |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/205086 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Lopes, Artur OscarMarkarian Abrahamian, RobertoUniversidade Federal do Rio Grande do Sul. Instituto de Matemática2020-01-30T04:09:24Z1994http://hdl.handle.net/10183/205086000262589A b stract - Billiards are the simplest models fur nudcrstanding statistical properties of thc dynamics of a gas in a closed compartment. vVc analyze the dynamics of a class of billiards (the open billiard on the plane) in terms of iuva.riant and conditionally inva.riant proba.bilities. The dynamical system has a horse-shoe structure. The stable and unstable manifolds are analytically described. The natural probability J.L is invariant and has support in a Cantor set. This probability is the conditiona.l limit of a conditiona.l probability J.LF that has a Holder continuous density with respcct to the Lebesgue measure. A formula relating entropy, Liapunov exponent and Hausdorff dimcnsion of a natural probability J.L for the system is presented. The natural probability fl is a Gibbs state of a potcntial 'lj; ( cohomologous to the potential associated to the positive Liapunov exponent, see formula (0.1 )), and we show that for a dense set of such billiards the potential 'lj; is not lattice. As the system has a horse-shoe structure one can compute the asymptotic growth rate of n(1·), the number of closed trajectories with the largest eigcuvalue of the derivative smaller tKru1 .r.application/pdfengCadernos de matemática e estatística. Série A, Trabalho de pesquisa. Porto Alegre. N. 39 (ago. 1994), f. 1-31Modelos estatisticos de bilhar : Medidas invariantesSistemas dinamicos : Probabilidade : Medida de lebesgue : EntropiaOpen billiards : cantor sets, invariant and conditionally invariant probabilitiesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000262589.pdf.txt000262589.pdf.txtExtracted Texttext/plain75126http://www.lume.ufrgs.br/bitstream/10183/205086/2/000262589.pdf.txt23b00267cbf2518cf6a157598b1c6e4cMD52ORIGINAL000262589.pdfTexto completo (inglês)application/pdf6297680http://www.lume.ufrgs.br/bitstream/10183/205086/1/000262589.pdf6707178588a9b115c15d753c98c221fbMD5110183/2050862021-06-26 04:40:42.608654oai:www.lume.ufrgs.br:10183/205086Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-06-26T07:40:42Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Open billiards : cantor sets, invariant and conditionally invariant probabilities |
title |
Open billiards : cantor sets, invariant and conditionally invariant probabilities |
spellingShingle |
Open billiards : cantor sets, invariant and conditionally invariant probabilities Lopes, Artur Oscar Modelos estatisticos de bilhar : Medidas invariantes Sistemas dinamicos : Probabilidade : Medida de lebesgue : Entropia |
title_short |
Open billiards : cantor sets, invariant and conditionally invariant probabilities |
title_full |
Open billiards : cantor sets, invariant and conditionally invariant probabilities |
title_fullStr |
Open billiards : cantor sets, invariant and conditionally invariant probabilities |
title_full_unstemmed |
Open billiards : cantor sets, invariant and conditionally invariant probabilities |
title_sort |
Open billiards : cantor sets, invariant and conditionally invariant probabilities |
author |
Lopes, Artur Oscar |
author_facet |
Lopes, Artur Oscar Markarian Abrahamian, Roberto |
author_role |
author |
author2 |
Markarian Abrahamian, Roberto |
author2_role |
author |
dc.contributor.other.pt_BR.fl_str_mv |
Universidade Federal do Rio Grande do Sul. Instituto de Matemática |
dc.contributor.author.fl_str_mv |
Lopes, Artur Oscar Markarian Abrahamian, Roberto |
dc.subject.por.fl_str_mv |
Modelos estatisticos de bilhar : Medidas invariantes Sistemas dinamicos : Probabilidade : Medida de lebesgue : Entropia |
topic |
Modelos estatisticos de bilhar : Medidas invariantes Sistemas dinamicos : Probabilidade : Medida de lebesgue : Entropia |
description |
A b stract - Billiards are the simplest models fur nudcrstanding statistical properties of thc dynamics of a gas in a closed compartment. vVc analyze the dynamics of a class of billiards (the open billiard on the plane) in terms of iuva.riant and conditionally inva.riant proba.bilities. The dynamical system has a horse-shoe structure. The stable and unstable manifolds are analytically described. The natural probability J.L is invariant and has support in a Cantor set. This probability is the conditiona.l limit of a conditiona.l probability J.LF that has a Holder continuous density with respcct to the Lebesgue measure. A formula relating entropy, Liapunov exponent and Hausdorff dimcnsion of a natural probability J.L for the system is presented. The natural probability fl is a Gibbs state of a potcntial 'lj; ( cohomologous to the potential associated to the positive Liapunov exponent, see formula (0.1 )), and we show that for a dense set of such billiards the potential 'lj; is not lattice. As the system has a horse-shoe structure one can compute the asymptotic growth rate of n(1·), the number of closed trajectories with the largest eigcuvalue of the derivative smaller tKru1 .r. |
publishDate |
1994 |
dc.date.issued.fl_str_mv |
1994 |
dc.date.accessioned.fl_str_mv |
2020-01-30T04:09:24Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/205086 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000262589 |
url |
http://hdl.handle.net/10183/205086 |
identifier_str_mv |
000262589 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Cadernos de matemática e estatística. Série A, Trabalho de pesquisa. Porto Alegre. N. 39 (ago. 1994), f. 1-31 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/205086/2/000262589.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/205086/1/000262589.pdf |
bitstream.checksum.fl_str_mv |
23b00267cbf2518cf6a157598b1c6e4c 6707178588a9b115c15d753c98c221fb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447705263013888 |