Absolutely continuous invariant mesures for a class of affine interval exchange maps
Autor(a) principal: | |
---|---|
Data de Publicação: | 1995 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/27487 |
Resumo: | We consider a class A of affine interval exchange maps of the interval and we analyse several ergodic properties of the elements of this class, among them the existence of absolutely continuous invariant probability measures. The maps of this class are parametrised by two values a and b , where a , b є (0, 1) . There is a renormalization map T defined from A to itself producing an attractor given by the set R of pure rotations, i.e. the set of ( a , b) such that b = 1-a . The density of the absolutely continuous invariant probability and the rotation number of the elements of the class d are explicitly calculated. We also show how the continued fraction expansion of this rotation number can be obtained from the renormalization map. |
id |
UFRGS-2_5315362c4951be8cea681178520be39b |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/27487 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Coelho, ZaqueuLopes, Artur OscarRocha, Luiz Fernando Carvalho da2011-01-26T05:59:13Z19950002-9939http://hdl.handle.net/10183/27487000141010We consider a class A of affine interval exchange maps of the interval and we analyse several ergodic properties of the elements of this class, among them the existence of absolutely continuous invariant probability measures. The maps of this class are parametrised by two values a and b , where a , b є (0, 1) . There is a renormalization map T defined from A to itself producing an attractor given by the set R of pure rotations, i.e. the set of ( a , b) such that b = 1-a . The density of the absolutely continuous invariant probability and the rotation number of the elements of the class d are explicitly calculated. We also show how the continued fraction expansion of this rotation number can be obtained from the renormalization map.application/pdfengProceedings of the American Mathematical Society. Providence, RI. Vol. 123, no. 11 (nov. 1995), p. 3533-3542.Equações diferenciais : Sistemas dinamicos : Probabilidade : Medidas invariantes : Transformacoes intervalares afins : Ergodicidade : AtratorAbsolutely continuous invariant mesures for a class of affine interval exchange mapsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000141010.pdf000141010.pdfTexto completo (inglês)application/pdf279546http://www.lume.ufrgs.br/bitstream/10183/27487/1/000141010.pdfcec7c6bc5f69af477b92be5a3971abb1MD51TEXT000141010.pdf.txt000141010.pdf.txtExtracted Texttext/plain22390http://www.lume.ufrgs.br/bitstream/10183/27487/2/000141010.pdf.txt0e63664a3d3048974007e0b4edd53596MD52THUMBNAIL000141010.pdf.jpg000141010.pdf.jpgGenerated Thumbnailimage/jpeg1691http://www.lume.ufrgs.br/bitstream/10183/27487/3/000141010.pdf.jpg4bedeceb90d349c0494aba6da65e880cMD5310183/274872021-06-26 04:38:43.336816oai:www.lume.ufrgs.br:10183/27487Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-06-26T07:38:43Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Absolutely continuous invariant mesures for a class of affine interval exchange maps |
title |
Absolutely continuous invariant mesures for a class of affine interval exchange maps |
spellingShingle |
Absolutely continuous invariant mesures for a class of affine interval exchange maps Coelho, Zaqueu Equações diferenciais : Sistemas dinamicos : Probabilidade : Medidas invariantes : Transformacoes intervalares afins : Ergodicidade : Atrator |
title_short |
Absolutely continuous invariant mesures for a class of affine interval exchange maps |
title_full |
Absolutely continuous invariant mesures for a class of affine interval exchange maps |
title_fullStr |
Absolutely continuous invariant mesures for a class of affine interval exchange maps |
title_full_unstemmed |
Absolutely continuous invariant mesures for a class of affine interval exchange maps |
title_sort |
Absolutely continuous invariant mesures for a class of affine interval exchange maps |
author |
Coelho, Zaqueu |
author_facet |
Coelho, Zaqueu Lopes, Artur Oscar Rocha, Luiz Fernando Carvalho da |
author_role |
author |
author2 |
Lopes, Artur Oscar Rocha, Luiz Fernando Carvalho da |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Coelho, Zaqueu Lopes, Artur Oscar Rocha, Luiz Fernando Carvalho da |
dc.subject.por.fl_str_mv |
Equações diferenciais : Sistemas dinamicos : Probabilidade : Medidas invariantes : Transformacoes intervalares afins : Ergodicidade : Atrator |
topic |
Equações diferenciais : Sistemas dinamicos : Probabilidade : Medidas invariantes : Transformacoes intervalares afins : Ergodicidade : Atrator |
description |
We consider a class A of affine interval exchange maps of the interval and we analyse several ergodic properties of the elements of this class, among them the existence of absolutely continuous invariant probability measures. The maps of this class are parametrised by two values a and b , where a , b є (0, 1) . There is a renormalization map T defined from A to itself producing an attractor given by the set R of pure rotations, i.e. the set of ( a , b) such that b = 1-a . The density of the absolutely continuous invariant probability and the rotation number of the elements of the class d are explicitly calculated. We also show how the continued fraction expansion of this rotation number can be obtained from the renormalization map. |
publishDate |
1995 |
dc.date.issued.fl_str_mv |
1995 |
dc.date.accessioned.fl_str_mv |
2011-01-26T05:59:13Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/27487 |
dc.identifier.issn.pt_BR.fl_str_mv |
0002-9939 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000141010 |
identifier_str_mv |
0002-9939 000141010 |
url |
http://hdl.handle.net/10183/27487 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Proceedings of the American Mathematical Society. Providence, RI. Vol. 123, no. 11 (nov. 1995), p. 3533-3542. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/27487/1/000141010.pdf http://www.lume.ufrgs.br/bitstream/10183/27487/2/000141010.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/27487/3/000141010.pdf.jpg |
bitstream.checksum.fl_str_mv |
cec7c6bc5f69af477b92be5a3971abb1 0e63664a3d3048974007e0b4edd53596 4bedeceb90d349c0494aba6da65e880c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447421992304640 |