Quasinormal modes and stability of accelerating Reissner-Norsdtröm AdS black holes

Detalhes bibliográficos
Autor(a) principal: Fontana, Rodrigo Dal Bosco
Data de Publicação: 2022
Outros Autores: Mena, Filipe C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/262994
Resumo: We investigate the numerical stability of accelerating AdS black holes against linear scalar perturbations. In particular, we study the evolution of a probe non-minimally coupled scalar field on Schwarzschild and Reissner-Nordström AdS black holes with small accelerations by computing the quasinormal modes of the perturbation spectrum. We decompose the scalar field Klein-Gordon equation and study the eigenvalue problem for its angular and radial-temporal parts using different numerical methods. The angular part is written in terms of the Heun solution and expanded through the Frobenius method which turns out to give eigenvalues qualitatively similar to the ones obtained through the spherical harmonics representation. The radial-temporal evolution renders a stable field profile which is decomposed in terms of damped and purely imaginary oscillations of the quasinormal modes. We calculate the respective frequencies for different spacetime parameters showing the existence of a fine-structure in the modes, for both real and imaginary parts, which is not present in the non-accelerating AdS black holes. Our results indicate that the Schwarzschild and Reissner-Nordström AdS black holes with small accelerations are stable against linear scalar perturbations.
id UFRGS-2_511904686f9613178b5b431281efb0df
oai_identifier_str oai:www.lume.ufrgs.br:10183/262994
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Fontana, Rodrigo Dal BoscoMena, Filipe C.2023-08-02T03:31:33Z20221029-8479http://hdl.handle.net/10183/262994001162013We investigate the numerical stability of accelerating AdS black holes against linear scalar perturbations. In particular, we study the evolution of a probe non-minimally coupled scalar field on Schwarzschild and Reissner-Nordström AdS black holes with small accelerations by computing the quasinormal modes of the perturbation spectrum. We decompose the scalar field Klein-Gordon equation and study the eigenvalue problem for its angular and radial-temporal parts using different numerical methods. The angular part is written in terms of the Heun solution and expanded through the Frobenius method which turns out to give eigenvalues qualitatively similar to the ones obtained through the spherical harmonics representation. The radial-temporal evolution renders a stable field profile which is decomposed in terms of damped and purely imaginary oscillations of the quasinormal modes. We calculate the respective frequencies for different spacetime parameters showing the existence of a fine-structure in the modes, for both real and imaginary parts, which is not present in the non-accelerating AdS black holes. Our results indicate that the Schwarzschild and Reissner-Nordström AdS black holes with small accelerations are stable against linear scalar perturbations.application/pdfengThe journal of high energy physics [recurso eletrônico]. Trieste. No. 10 (Oct. 2022), 047, 27 p.Buracos negrosGravidadeBlack holesClassical theories of gravityQuasinormal modes and stability of accelerating Reissner-Norsdtröm AdS black holesEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001162013.pdf.txt001162013.pdf.txtExtracted Texttext/plain65880http://www.lume.ufrgs.br/bitstream/10183/262994/2/001162013.pdf.txt480f33cf761f216b400725f9eec12344MD52ORIGINAL001162013.pdfTexto completo (inglês)application/pdf2096113http://www.lume.ufrgs.br/bitstream/10183/262994/1/001162013.pdf0efd291cf2829690f9a12b58788530e4MD5110183/2629942023-08-03 03:32:21.132869oai:www.lume.ufrgs.br:10183/262994Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-08-03T06:32:21Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Quasinormal modes and stability of accelerating Reissner-Norsdtröm AdS black holes
title Quasinormal modes and stability of accelerating Reissner-Norsdtröm AdS black holes
spellingShingle Quasinormal modes and stability of accelerating Reissner-Norsdtröm AdS black holes
Fontana, Rodrigo Dal Bosco
Buracos negros
Gravidade
Black holes
Classical theories of gravity
title_short Quasinormal modes and stability of accelerating Reissner-Norsdtröm AdS black holes
title_full Quasinormal modes and stability of accelerating Reissner-Norsdtröm AdS black holes
title_fullStr Quasinormal modes and stability of accelerating Reissner-Norsdtröm AdS black holes
title_full_unstemmed Quasinormal modes and stability of accelerating Reissner-Norsdtröm AdS black holes
title_sort Quasinormal modes and stability of accelerating Reissner-Norsdtröm AdS black holes
author Fontana, Rodrigo Dal Bosco
author_facet Fontana, Rodrigo Dal Bosco
Mena, Filipe C.
author_role author
author2 Mena, Filipe C.
author2_role author
dc.contributor.author.fl_str_mv Fontana, Rodrigo Dal Bosco
Mena, Filipe C.
dc.subject.por.fl_str_mv Buracos negros
Gravidade
topic Buracos negros
Gravidade
Black holes
Classical theories of gravity
dc.subject.eng.fl_str_mv Black holes
Classical theories of gravity
description We investigate the numerical stability of accelerating AdS black holes against linear scalar perturbations. In particular, we study the evolution of a probe non-minimally coupled scalar field on Schwarzschild and Reissner-Nordström AdS black holes with small accelerations by computing the quasinormal modes of the perturbation spectrum. We decompose the scalar field Klein-Gordon equation and study the eigenvalue problem for its angular and radial-temporal parts using different numerical methods. The angular part is written in terms of the Heun solution and expanded through the Frobenius method which turns out to give eigenvalues qualitatively similar to the ones obtained through the spherical harmonics representation. The radial-temporal evolution renders a stable field profile which is decomposed in terms of damped and purely imaginary oscillations of the quasinormal modes. We calculate the respective frequencies for different spacetime parameters showing the existence of a fine-structure in the modes, for both real and imaginary parts, which is not present in the non-accelerating AdS black holes. Our results indicate that the Schwarzschild and Reissner-Nordström AdS black holes with small accelerations are stable against linear scalar perturbations.
publishDate 2022
dc.date.issued.fl_str_mv 2022
dc.date.accessioned.fl_str_mv 2023-08-02T03:31:33Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/262994
dc.identifier.issn.pt_BR.fl_str_mv 1029-8479
dc.identifier.nrb.pt_BR.fl_str_mv 001162013
identifier_str_mv 1029-8479
001162013
url http://hdl.handle.net/10183/262994
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv The journal of high energy physics [recurso eletrônico]. Trieste. No. 10 (Oct. 2022), 047, 27 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/262994/2/001162013.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/262994/1/001162013.pdf
bitstream.checksum.fl_str_mv 480f33cf761f216b400725f9eec12344
0efd291cf2829690f9a12b58788530e4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447833820528640