Inflated beta autoregressive moving average models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/273169 |
Resumo: | In this paper, we introduce the inflated beta autoregressive moving average (IβARMA) models for modeling and forecasting time series data that assume values in the intervals (0,1], [0,1) or [0,1]. The proposed model considers a set of regressors, an autoregressive moving average structure and a link function to model the conditional mean of inflated beta conditionally distributed variable observed over the time. We develop partial likelihood estimation and derive closed-form expressions for the score vector and the cumulative partial information matrix. Hypotheses testing, confidence interval, some diagnostic tools and forecasting are also proposed. We evaluate the finite sample performances of partial maximum likelihood estimators and confidence interval using Monte Carlo simulations. Two empirical applications related to forecasting hydro-environmental data are presented and discussed. |
id |
UFRGS-2_59a4e259052347f34b9af5e579118079 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/273169 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Bayer, Fábio MarianoPumi, GuilhermePereira, Tarciana LiberalSouza, Tatiene Correia de2024-03-09T05:02:05Z20231807-0302http://hdl.handle.net/10183/273169001174090In this paper, we introduce the inflated beta autoregressive moving average (IβARMA) models for modeling and forecasting time series data that assume values in the intervals (0,1], [0,1) or [0,1]. The proposed model considers a set of regressors, an autoregressive moving average structure and a link function to model the conditional mean of inflated beta conditionally distributed variable observed over the time. We develop partial likelihood estimation and derive closed-form expressions for the score vector and the cumulative partial information matrix. Hypotheses testing, confidence interval, some diagnostic tools and forecasting are also proposed. We evaluate the finite sample performances of partial maximum likelihood estimators and confidence interval using Monte Carlo simulations. Two empirical applications related to forecasting hydro-environmental data are presented and discussed.application/pdfengComputational and Applied Mathematics. São Carlos. Vol. 42 (May 2023), art. 183, 24 p.Modelagem de dadosDistribuicaoPrevisõesSéries temporaisInflated beta distributionForecastsRates and proportionsTime seriesInflated beta autoregressive moving average modelsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001174090.pdf.txt001174090.pdf.txtExtracted Texttext/plain61716http://www.lume.ufrgs.br/bitstream/10183/273169/2/001174090.pdf.txtcca7bc1d4b777a47b54aad1769d5eaa8MD52ORIGINAL001174090.pdfTexto completo (inglês)application/pdf928731http://www.lume.ufrgs.br/bitstream/10183/273169/1/001174090.pdf529b62f4b64e671c914412811fa140cbMD5110183/2731692024-03-10 04:53:18.411904oai:www.lume.ufrgs.br:10183/273169Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-03-10T07:53:18Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Inflated beta autoregressive moving average models |
title |
Inflated beta autoregressive moving average models |
spellingShingle |
Inflated beta autoregressive moving average models Bayer, Fábio Mariano Modelagem de dados Distribuicao Previsões Séries temporais Inflated beta distribution Forecasts Rates and proportions Time series |
title_short |
Inflated beta autoregressive moving average models |
title_full |
Inflated beta autoregressive moving average models |
title_fullStr |
Inflated beta autoregressive moving average models |
title_full_unstemmed |
Inflated beta autoregressive moving average models |
title_sort |
Inflated beta autoregressive moving average models |
author |
Bayer, Fábio Mariano |
author_facet |
Bayer, Fábio Mariano Pumi, Guilherme Pereira, Tarciana Liberal Souza, Tatiene Correia de |
author_role |
author |
author2 |
Pumi, Guilherme Pereira, Tarciana Liberal Souza, Tatiene Correia de |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Bayer, Fábio Mariano Pumi, Guilherme Pereira, Tarciana Liberal Souza, Tatiene Correia de |
dc.subject.por.fl_str_mv |
Modelagem de dados Distribuicao Previsões Séries temporais |
topic |
Modelagem de dados Distribuicao Previsões Séries temporais Inflated beta distribution Forecasts Rates and proportions Time series |
dc.subject.eng.fl_str_mv |
Inflated beta distribution Forecasts Rates and proportions Time series |
description |
In this paper, we introduce the inflated beta autoregressive moving average (IβARMA) models for modeling and forecasting time series data that assume values in the intervals (0,1], [0,1) or [0,1]. The proposed model considers a set of regressors, an autoregressive moving average structure and a link function to model the conditional mean of inflated beta conditionally distributed variable observed over the time. We develop partial likelihood estimation and derive closed-form expressions for the score vector and the cumulative partial information matrix. Hypotheses testing, confidence interval, some diagnostic tools and forecasting are also proposed. We evaluate the finite sample performances of partial maximum likelihood estimators and confidence interval using Monte Carlo simulations. Two empirical applications related to forecasting hydro-environmental data are presented and discussed. |
publishDate |
2023 |
dc.date.issued.fl_str_mv |
2023 |
dc.date.accessioned.fl_str_mv |
2024-03-09T05:02:05Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/273169 |
dc.identifier.issn.pt_BR.fl_str_mv |
1807-0302 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001174090 |
identifier_str_mv |
1807-0302 001174090 |
url |
http://hdl.handle.net/10183/273169 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Computational and Applied Mathematics. São Carlos. Vol. 42 (May 2023), art. 183, 24 p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/273169/2/001174090.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/273169/1/001174090.pdf |
bitstream.checksum.fl_str_mv |
cca7bc1d4b777a47b54aad1769d5eaa8 529b62f4b64e671c914412811fa140cb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447856176168960 |