Inflated beta autoregressive moving average models

Detalhes bibliográficos
Autor(a) principal: Bayer, Fábio Mariano
Data de Publicação: 2023
Outros Autores: Pumi, Guilherme, Pereira, Tarciana Liberal, Souza, Tatiene Correia de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/273169
Resumo: In this paper, we introduce the inflated beta autoregressive moving average (IβARMA) models for modeling and forecasting time series data that assume values in the intervals (0,1], [0,1) or [0,1]. The proposed model considers a set of regressors, an autoregressive moving average structure and a link function to model the conditional mean of inflated beta conditionally distributed variable observed over the time. We develop partial likelihood estimation and derive closed-form expressions for the score vector and the cumulative partial information matrix. Hypotheses testing, confidence interval, some diagnostic tools and forecasting are also proposed. We evaluate the finite sample performances of partial maximum likelihood estimators and confidence interval using Monte Carlo simulations. Two empirical applications related to forecasting hydro-environmental data are presented and discussed.
id UFRGS-2_59a4e259052347f34b9af5e579118079
oai_identifier_str oai:www.lume.ufrgs.br:10183/273169
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Bayer, Fábio MarianoPumi, GuilhermePereira, Tarciana LiberalSouza, Tatiene Correia de2024-03-09T05:02:05Z20231807-0302http://hdl.handle.net/10183/273169001174090In this paper, we introduce the inflated beta autoregressive moving average (IβARMA) models for modeling and forecasting time series data that assume values in the intervals (0,1], [0,1) or [0,1]. The proposed model considers a set of regressors, an autoregressive moving average structure and a link function to model the conditional mean of inflated beta conditionally distributed variable observed over the time. We develop partial likelihood estimation and derive closed-form expressions for the score vector and the cumulative partial information matrix. Hypotheses testing, confidence interval, some diagnostic tools and forecasting are also proposed. We evaluate the finite sample performances of partial maximum likelihood estimators and confidence interval using Monte Carlo simulations. Two empirical applications related to forecasting hydro-environmental data are presented and discussed.application/pdfengComputational and Applied Mathematics. São Carlos. Vol. 42 (May 2023), art. 183, 24 p.Modelagem de dadosDistribuicaoPrevisõesSéries temporaisInflated beta distributionForecastsRates and proportionsTime seriesInflated beta autoregressive moving average modelsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001174090.pdf.txt001174090.pdf.txtExtracted Texttext/plain61716http://www.lume.ufrgs.br/bitstream/10183/273169/2/001174090.pdf.txtcca7bc1d4b777a47b54aad1769d5eaa8MD52ORIGINAL001174090.pdfTexto completo (inglês)application/pdf928731http://www.lume.ufrgs.br/bitstream/10183/273169/1/001174090.pdf529b62f4b64e671c914412811fa140cbMD5110183/2731692024-03-10 04:53:18.411904oai:www.lume.ufrgs.br:10183/273169Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-03-10T07:53:18Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Inflated beta autoregressive moving average models
title Inflated beta autoregressive moving average models
spellingShingle Inflated beta autoregressive moving average models
Bayer, Fábio Mariano
Modelagem de dados
Distribuicao
Previsões
Séries temporais
Inflated beta distribution
Forecasts
Rates and proportions
Time series
title_short Inflated beta autoregressive moving average models
title_full Inflated beta autoregressive moving average models
title_fullStr Inflated beta autoregressive moving average models
title_full_unstemmed Inflated beta autoregressive moving average models
title_sort Inflated beta autoregressive moving average models
author Bayer, Fábio Mariano
author_facet Bayer, Fábio Mariano
Pumi, Guilherme
Pereira, Tarciana Liberal
Souza, Tatiene Correia de
author_role author
author2 Pumi, Guilherme
Pereira, Tarciana Liberal
Souza, Tatiene Correia de
author2_role author
author
author
dc.contributor.author.fl_str_mv Bayer, Fábio Mariano
Pumi, Guilherme
Pereira, Tarciana Liberal
Souza, Tatiene Correia de
dc.subject.por.fl_str_mv Modelagem de dados
Distribuicao
Previsões
Séries temporais
topic Modelagem de dados
Distribuicao
Previsões
Séries temporais
Inflated beta distribution
Forecasts
Rates and proportions
Time series
dc.subject.eng.fl_str_mv Inflated beta distribution
Forecasts
Rates and proportions
Time series
description In this paper, we introduce the inflated beta autoregressive moving average (IβARMA) models for modeling and forecasting time series data that assume values in the intervals (0,1], [0,1) or [0,1]. The proposed model considers a set of regressors, an autoregressive moving average structure and a link function to model the conditional mean of inflated beta conditionally distributed variable observed over the time. We develop partial likelihood estimation and derive closed-form expressions for the score vector and the cumulative partial information matrix. Hypotheses testing, confidence interval, some diagnostic tools and forecasting are also proposed. We evaluate the finite sample performances of partial maximum likelihood estimators and confidence interval using Monte Carlo simulations. Two empirical applications related to forecasting hydro-environmental data are presented and discussed.
publishDate 2023
dc.date.issued.fl_str_mv 2023
dc.date.accessioned.fl_str_mv 2024-03-09T05:02:05Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/273169
dc.identifier.issn.pt_BR.fl_str_mv 1807-0302
dc.identifier.nrb.pt_BR.fl_str_mv 001174090
identifier_str_mv 1807-0302
001174090
url http://hdl.handle.net/10183/273169
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Computational and Applied Mathematics. São Carlos. Vol. 42 (May 2023), art. 183, 24 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/273169/2/001174090.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/273169/1/001174090.pdf
bitstream.checksum.fl_str_mv cca7bc1d4b777a47b54aad1769d5eaa8
529b62f4b64e671c914412811fa140cb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447856176168960