Microscopic formulation of a lattice-defect model

Detalhes bibliográficos
Autor(a) principal: Holz, Arno
Data de Publicação: 1979
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/104006
Resumo: A microscopic construction method of lattice defects which can be represented by dislocation configurations in simple-cubic lattices and for interaction by central forces is given. In contrast to standard theories, where dislocations are introduced via topological operations (Burgers circuit), the author starts from a microscopic ad hoc Hamiltonian which. is suitable only for central-force interacting systems. The various sectors of this microscopic Hamiltonian are associated with dislocation configurations. A detailed discussion of the stability and symmetry properties of the microscopié Hamiltonian is given. Possible extensions of the theory to non-central-force interacting systems are pointed out.
id UFRGS-2_5d1b806f63977359d5316db74eb4d61e
oai_identifier_str oai:www.lume.ufrgs.br:10183/104006
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Holz, Arno2014-10-01T02:10:22Z19790556-2791http://hdl.handle.net/10183/104006000144860A microscopic construction method of lattice defects which can be represented by dislocation configurations in simple-cubic lattices and for interaction by central forces is given. In contrast to standard theories, where dislocations are introduced via topological operations (Burgers circuit), the author starts from a microscopic ad hoc Hamiltonian which. is suitable only for central-force interacting systems. The various sectors of this microscopic Hamiltonian are associated with dislocation configurations. A detailed discussion of the stability and symmetry properties of the microscopié Hamiltonian is given. Possible extensions of the theory to non-central-force interacting systems are pointed out.application/pdfengPhysical review. A. General physics. Vol. 20, no. 6 (Dec. 1979), p. 2521-2532Física da matéria condensadaDislocacoesDefeitos puntuaisMicroscopic formulation of a lattice-defect modelEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000144860.pdf000144860.pdfTexto completo (inglês)application/pdf1321950http://www.lume.ufrgs.br/bitstream/10183/104006/1/000144860.pdffed4213f185c20f8eb9d7cc0c7223520MD51TEXT000144860.pdf.txt000144860.pdf.txtExtracted Texttext/plain39603http://www.lume.ufrgs.br/bitstream/10183/104006/2/000144860.pdf.txta9a220b615117eddbeaa102deb5317eaMD5210183/1040062018-06-07 02:31:50.284609oai:www.lume.ufrgs.br:10183/104006Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2018-06-07T05:31:50Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Microscopic formulation of a lattice-defect model
title Microscopic formulation of a lattice-defect model
spellingShingle Microscopic formulation of a lattice-defect model
Holz, Arno
Física da matéria condensada
Dislocacoes
Defeitos puntuais
title_short Microscopic formulation of a lattice-defect model
title_full Microscopic formulation of a lattice-defect model
title_fullStr Microscopic formulation of a lattice-defect model
title_full_unstemmed Microscopic formulation of a lattice-defect model
title_sort Microscopic formulation of a lattice-defect model
author Holz, Arno
author_facet Holz, Arno
author_role author
dc.contributor.author.fl_str_mv Holz, Arno
dc.subject.por.fl_str_mv Física da matéria condensada
Dislocacoes
Defeitos puntuais
topic Física da matéria condensada
Dislocacoes
Defeitos puntuais
description A microscopic construction method of lattice defects which can be represented by dislocation configurations in simple-cubic lattices and for interaction by central forces is given. In contrast to standard theories, where dislocations are introduced via topological operations (Burgers circuit), the author starts from a microscopic ad hoc Hamiltonian which. is suitable only for central-force interacting systems. The various sectors of this microscopic Hamiltonian are associated with dislocation configurations. A detailed discussion of the stability and symmetry properties of the microscopié Hamiltonian is given. Possible extensions of the theory to non-central-force interacting systems are pointed out.
publishDate 1979
dc.date.issued.fl_str_mv 1979
dc.date.accessioned.fl_str_mv 2014-10-01T02:10:22Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/104006
dc.identifier.issn.pt_BR.fl_str_mv 0556-2791
dc.identifier.nrb.pt_BR.fl_str_mv 000144860
identifier_str_mv 0556-2791
000144860
url http://hdl.handle.net/10183/104006
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical review. A. General physics. Vol. 20, no. 6 (Dec. 1979), p. 2521-2532
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/104006/1/000144860.pdf
http://www.lume.ufrgs.br/bitstream/10183/104006/2/000144860.pdf.txt
bitstream.checksum.fl_str_mv fed4213f185c20f8eb9d7cc0c7223520
a9a220b615117eddbeaa102deb5317ea
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447561322889216