Edge Groups : an approach to understanding the Mesh quality of Marching Methods

Detalhes bibliográficos
Autor(a) principal: Dietrich, Carlos Augusto
Data de Publicação: 2008
Outros Autores: Scheidegger, Carlos Eduardo, Comba, Joao Luiz Dihl, Nedel, Luciana Porcher, Silva, Cláudio Teixeira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/27618
Resumo: Marching Cubes is the most popular isosurface extraction algorithm due to its simplicity, efficiency and robustness. It has been widely studied, improved, and extended. While much early work was concerned with efficiency and correctness issues, lately there has been a push to improve the quality of Marching Cubes meshes so that they can be used in computational codes. In this work we present a new classification of MC cases that we call Edge Groups, which helps elucidate the issues that impact the triangle quality of the meshes that the method generates. This formulation allows a more systematic way to bound the triangle quality, and is general enough to extend to other polyhedral cell shapes used in other polygonization algorithms. Using this analysis, we also discuss ways to improve the quality of the resulting triangle mesh, including some that require only minor modifications of the original algorithm.
id UFRGS-2_62483b2d612c5a5ca4dffb2f5c0a93e1
oai_identifier_str oai:www.lume.ufrgs.br:10183/27618
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Dietrich, Carlos AugustoScheidegger, Carlos EduardoComba, Joao Luiz DihlNedel, Luciana PorcherSilva, Cláudio Teixeira2011-01-29T06:00:42Z20081077-2626http://hdl.handle.net/10183/27618000681704Marching Cubes is the most popular isosurface extraction algorithm due to its simplicity, efficiency and robustness. It has been widely studied, improved, and extended. While much early work was concerned with efficiency and correctness issues, lately there has been a push to improve the quality of Marching Cubes meshes so that they can be used in computational codes. In this work we present a new classification of MC cases that we call Edge Groups, which helps elucidate the issues that impact the triangle quality of the meshes that the method generates. This formulation allows a more systematic way to bound the triangle quality, and is general enough to extend to other polyhedral cell shapes used in other polygonization algorithms. Using this analysis, we also discuss ways to improve the quality of the resulting triangle mesh, including some that require only minor modifications of the original algorithm.application/pdfengIEEE transactions on visualization and computer graphics. Los Alamitos. Vol. 14, no 6 (Nov./Dec. 2008), p. 1651-1658Computação gráficaIsosurface extractionMarching cubesEdge Groups : an approach to understanding the Mesh quality of Marching MethodsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000681704.pdf000681704.pdfTexto completo (inglês)application/pdf5526127http://www.lume.ufrgs.br/bitstream/10183/27618/1/000681704.pdf4ff8b308c9eee263ceaf3ceb159e9f3bMD51TEXT000681704.pdf.txt000681704.pdf.txtExtracted Texttext/plain46443http://www.lume.ufrgs.br/bitstream/10183/27618/2/000681704.pdf.txt2395eaa050e72673f3c342284c0285bbMD52THUMBNAIL000681704.pdf.jpg000681704.pdf.jpgGenerated Thumbnailimage/jpeg2227http://www.lume.ufrgs.br/bitstream/10183/27618/3/000681704.pdf.jpgf931065e977c1ec2557dafc95f33d9f2MD5310183/276182021-06-12 04:40:43.9252oai:www.lume.ufrgs.br:10183/27618Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-06-12T07:40:43Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Edge Groups : an approach to understanding the Mesh quality of Marching Methods
title Edge Groups : an approach to understanding the Mesh quality of Marching Methods
spellingShingle Edge Groups : an approach to understanding the Mesh quality of Marching Methods
Dietrich, Carlos Augusto
Computação gráfica
Isosurface extraction
Marching cubes
title_short Edge Groups : an approach to understanding the Mesh quality of Marching Methods
title_full Edge Groups : an approach to understanding the Mesh quality of Marching Methods
title_fullStr Edge Groups : an approach to understanding the Mesh quality of Marching Methods
title_full_unstemmed Edge Groups : an approach to understanding the Mesh quality of Marching Methods
title_sort Edge Groups : an approach to understanding the Mesh quality of Marching Methods
author Dietrich, Carlos Augusto
author_facet Dietrich, Carlos Augusto
Scheidegger, Carlos Eduardo
Comba, Joao Luiz Dihl
Nedel, Luciana Porcher
Silva, Cláudio Teixeira
author_role author
author2 Scheidegger, Carlos Eduardo
Comba, Joao Luiz Dihl
Nedel, Luciana Porcher
Silva, Cláudio Teixeira
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Dietrich, Carlos Augusto
Scheidegger, Carlos Eduardo
Comba, Joao Luiz Dihl
Nedel, Luciana Porcher
Silva, Cláudio Teixeira
dc.subject.por.fl_str_mv Computação gráfica
topic Computação gráfica
Isosurface extraction
Marching cubes
dc.subject.eng.fl_str_mv Isosurface extraction
Marching cubes
description Marching Cubes is the most popular isosurface extraction algorithm due to its simplicity, efficiency and robustness. It has been widely studied, improved, and extended. While much early work was concerned with efficiency and correctness issues, lately there has been a push to improve the quality of Marching Cubes meshes so that they can be used in computational codes. In this work we present a new classification of MC cases that we call Edge Groups, which helps elucidate the issues that impact the triangle quality of the meshes that the method generates. This formulation allows a more systematic way to bound the triangle quality, and is general enough to extend to other polyhedral cell shapes used in other polygonization algorithms. Using this analysis, we also discuss ways to improve the quality of the resulting triangle mesh, including some that require only minor modifications of the original algorithm.
publishDate 2008
dc.date.issued.fl_str_mv 2008
dc.date.accessioned.fl_str_mv 2011-01-29T06:00:42Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/27618
dc.identifier.issn.pt_BR.fl_str_mv 1077-2626
dc.identifier.nrb.pt_BR.fl_str_mv 000681704
identifier_str_mv 1077-2626
000681704
url http://hdl.handle.net/10183/27618
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv IEEE transactions on visualization and computer graphics. Los Alamitos. Vol. 14, no 6 (Nov./Dec. 2008), p. 1651-1658
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/27618/1/000681704.pdf
http://www.lume.ufrgs.br/bitstream/10183/27618/2/000681704.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/27618/3/000681704.pdf.jpg
bitstream.checksum.fl_str_mv 4ff8b308c9eee263ceaf3ceb159e9f3b
2395eaa050e72673f3c342284c0285bb
f931065e977c1ec2557dafc95f33d9f2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447422143299584