Index statistical properties of sparse random graphs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/131390 |
Resumo: | Using the replica method, we develop an analytical approach to compute the characteristic function for the probability PN(K,λ) that a large N × N adjacency matrix of sparse random graphs has K eigenvalues below a threshold λ. The method allows to determine, in principle, all moments of PN(K,λ), from which the typical sample-to-sample fluctuations can be fully characterized. For random graph models with localized eigenvectors, we showthat the index variance scales linearly withN 1 for |λ| > 0, with a model-dependent prefactor that can be exactly calculated. Explicit results are discussed for Erd¨os-R´enyi and regular random graphs, both exhibiting a prefactor with a nonmonotonic behavior as a function of λ. These results contrast with rotationally invariant random matrices, where the index variance scales only as lnN, with an universal prefactor that is independent of λ. Numerical diagonalization results confirm the exactness of our approach and, in addition, strongly support the Gaussian nature of the index fluctuations. |
id |
UFRGS-2_6a1f35c72048ac33b63ec3585931e3f9 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/131390 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Metz, Fernando LucasStariolo, Daniel Adrian2015-12-25T02:39:26Z20151539-3755http://hdl.handle.net/10183/131390000980939Using the replica method, we develop an analytical approach to compute the characteristic function for the probability PN(K,λ) that a large N × N adjacency matrix of sparse random graphs has K eigenvalues below a threshold λ. The method allows to determine, in principle, all moments of PN(K,λ), from which the typical sample-to-sample fluctuations can be fully characterized. For random graph models with localized eigenvectors, we showthat the index variance scales linearly withN 1 for |λ| > 0, with a model-dependent prefactor that can be exactly calculated. Explicit results are discussed for Erd¨os-R´enyi and regular random graphs, both exhibiting a prefactor with a nonmonotonic behavior as a function of λ. These results contrast with rotationally invariant random matrices, where the index variance scales only as lnN, with an universal prefactor that is independent of λ. Numerical diagonalization results confirm the exactness of our approach and, in addition, strongly support the Gaussian nature of the index fluctuations.application/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Vol. 92, no. 4 (Oct. 2015), 042153, 9 p.Autovalores e autofunçõesProcessos randômicosTeoria de graficosProbabilidadeAnálise estatísticaÁlgebra matricialFlutuaçõesIndex statistical properties of sparse random graphsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000980939.pdf000980939.pdfTexto completo (inglês)application/pdf360126http://www.lume.ufrgs.br/bitstream/10183/131390/1/000980939.pdfb463b63da9074ec684ac86a84a03fee5MD51TEXT000980939.pdf.txt000980939.pdf.txtExtracted Texttext/plain42521http://www.lume.ufrgs.br/bitstream/10183/131390/2/000980939.pdf.txt0e5133092bac19f32afac1f2ce250791MD52THUMBNAIL000980939.pdf.jpg000980939.pdf.jpgGenerated Thumbnailimage/jpeg2105http://www.lume.ufrgs.br/bitstream/10183/131390/3/000980939.pdf.jpg1da4939d56089ebff7bd85f95f6d2b44MD5310183/1313902023-05-21 03:28:02.902561oai:www.lume.ufrgs.br:10183/131390Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-05-21T06:28:02Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Index statistical properties of sparse random graphs |
title |
Index statistical properties of sparse random graphs |
spellingShingle |
Index statistical properties of sparse random graphs Metz, Fernando Lucas Autovalores e autofunções Processos randômicos Teoria de graficos Probabilidade Análise estatística Álgebra matricial Flutuações |
title_short |
Index statistical properties of sparse random graphs |
title_full |
Index statistical properties of sparse random graphs |
title_fullStr |
Index statistical properties of sparse random graphs |
title_full_unstemmed |
Index statistical properties of sparse random graphs |
title_sort |
Index statistical properties of sparse random graphs |
author |
Metz, Fernando Lucas |
author_facet |
Metz, Fernando Lucas Stariolo, Daniel Adrian |
author_role |
author |
author2 |
Stariolo, Daniel Adrian |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Metz, Fernando Lucas Stariolo, Daniel Adrian |
dc.subject.por.fl_str_mv |
Autovalores e autofunções Processos randômicos Teoria de graficos Probabilidade Análise estatística Álgebra matricial Flutuações |
topic |
Autovalores e autofunções Processos randômicos Teoria de graficos Probabilidade Análise estatística Álgebra matricial Flutuações |
description |
Using the replica method, we develop an analytical approach to compute the characteristic function for the probability PN(K,λ) that a large N × N adjacency matrix of sparse random graphs has K eigenvalues below a threshold λ. The method allows to determine, in principle, all moments of PN(K,λ), from which the typical sample-to-sample fluctuations can be fully characterized. For random graph models with localized eigenvectors, we showthat the index variance scales linearly withN 1 for |λ| > 0, with a model-dependent prefactor that can be exactly calculated. Explicit results are discussed for Erd¨os-R´enyi and regular random graphs, both exhibiting a prefactor with a nonmonotonic behavior as a function of λ. These results contrast with rotationally invariant random matrices, where the index variance scales only as lnN, with an universal prefactor that is independent of λ. Numerical diagonalization results confirm the exactness of our approach and, in addition, strongly support the Gaussian nature of the index fluctuations. |
publishDate |
2015 |
dc.date.accessioned.fl_str_mv |
2015-12-25T02:39:26Z |
dc.date.issued.fl_str_mv |
2015 |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/131390 |
dc.identifier.issn.pt_BR.fl_str_mv |
1539-3755 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000980939 |
identifier_str_mv |
1539-3755 000980939 |
url |
http://hdl.handle.net/10183/131390 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 92, no. 4 (Oct. 2015), 042153, 9 p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/131390/1/000980939.pdf http://www.lume.ufrgs.br/bitstream/10183/131390/2/000980939.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/131390/3/000980939.pdf.jpg |
bitstream.checksum.fl_str_mv |
b463b63da9074ec684ac86a84a03fee5 0e5133092bac19f32afac1f2ce250791 1da4939d56089ebff7bd85f95f6d2b44 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447605624176640 |