Index statistical properties of sparse random graphs

Detalhes bibliográficos
Autor(a) principal: Metz, Fernando Lucas
Data de Publicação: 2015
Outros Autores: Stariolo, Daniel Adrian
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/131390
Resumo: Using the replica method, we develop an analytical approach to compute the characteristic function for the probability PN(K,λ) that a large N × N adjacency matrix of sparse random graphs has K eigenvalues below a threshold λ. The method allows to determine, in principle, all moments of PN(K,λ), from which the typical sample-to-sample fluctuations can be fully characterized. For random graph models with localized eigenvectors, we showthat the index variance scales linearly withN 1 for |λ| > 0, with a model-dependent prefactor that can be exactly calculated. Explicit results are discussed for Erd¨os-R´enyi and regular random graphs, both exhibiting a prefactor with a nonmonotonic behavior as a function of λ. These results contrast with rotationally invariant random matrices, where the index variance scales only as lnN, with an universal prefactor that is independent of λ. Numerical diagonalization results confirm the exactness of our approach and, in addition, strongly support the Gaussian nature of the index fluctuations.
id UFRGS-2_6a1f35c72048ac33b63ec3585931e3f9
oai_identifier_str oai:www.lume.ufrgs.br:10183/131390
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Metz, Fernando LucasStariolo, Daniel Adrian2015-12-25T02:39:26Z20151539-3755http://hdl.handle.net/10183/131390000980939Using the replica method, we develop an analytical approach to compute the characteristic function for the probability PN(K,λ) that a large N × N adjacency matrix of sparse random graphs has K eigenvalues below a threshold λ. The method allows to determine, in principle, all moments of PN(K,λ), from which the typical sample-to-sample fluctuations can be fully characterized. For random graph models with localized eigenvectors, we showthat the index variance scales linearly withN 1 for |λ| > 0, with a model-dependent prefactor that can be exactly calculated. Explicit results are discussed for Erd¨os-R´enyi and regular random graphs, both exhibiting a prefactor with a nonmonotonic behavior as a function of λ. These results contrast with rotationally invariant random matrices, where the index variance scales only as lnN, with an universal prefactor that is independent of λ. Numerical diagonalization results confirm the exactness of our approach and, in addition, strongly support the Gaussian nature of the index fluctuations.application/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Vol. 92, no. 4 (Oct. 2015), 042153, 9 p.Autovalores e autofunçõesProcessos randômicosTeoria de graficosProbabilidadeAnálise estatísticaÁlgebra matricialFlutuaçõesIndex statistical properties of sparse random graphsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000980939.pdf000980939.pdfTexto completo (inglês)application/pdf360126http://www.lume.ufrgs.br/bitstream/10183/131390/1/000980939.pdfb463b63da9074ec684ac86a84a03fee5MD51TEXT000980939.pdf.txt000980939.pdf.txtExtracted Texttext/plain42521http://www.lume.ufrgs.br/bitstream/10183/131390/2/000980939.pdf.txt0e5133092bac19f32afac1f2ce250791MD52THUMBNAIL000980939.pdf.jpg000980939.pdf.jpgGenerated Thumbnailimage/jpeg2105http://www.lume.ufrgs.br/bitstream/10183/131390/3/000980939.pdf.jpg1da4939d56089ebff7bd85f95f6d2b44MD5310183/1313902023-05-21 03:28:02.902561oai:www.lume.ufrgs.br:10183/131390Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-05-21T06:28:02Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Index statistical properties of sparse random graphs
title Index statistical properties of sparse random graphs
spellingShingle Index statistical properties of sparse random graphs
Metz, Fernando Lucas
Autovalores e autofunções
Processos randômicos
Teoria de graficos
Probabilidade
Análise estatística
Álgebra matricial
Flutuações
title_short Index statistical properties of sparse random graphs
title_full Index statistical properties of sparse random graphs
title_fullStr Index statistical properties of sparse random graphs
title_full_unstemmed Index statistical properties of sparse random graphs
title_sort Index statistical properties of sparse random graphs
author Metz, Fernando Lucas
author_facet Metz, Fernando Lucas
Stariolo, Daniel Adrian
author_role author
author2 Stariolo, Daniel Adrian
author2_role author
dc.contributor.author.fl_str_mv Metz, Fernando Lucas
Stariolo, Daniel Adrian
dc.subject.por.fl_str_mv Autovalores e autofunções
Processos randômicos
Teoria de graficos
Probabilidade
Análise estatística
Álgebra matricial
Flutuações
topic Autovalores e autofunções
Processos randômicos
Teoria de graficos
Probabilidade
Análise estatística
Álgebra matricial
Flutuações
description Using the replica method, we develop an analytical approach to compute the characteristic function for the probability PN(K,λ) that a large N × N adjacency matrix of sparse random graphs has K eigenvalues below a threshold λ. The method allows to determine, in principle, all moments of PN(K,λ), from which the typical sample-to-sample fluctuations can be fully characterized. For random graph models with localized eigenvectors, we showthat the index variance scales linearly withN 1 for |λ| > 0, with a model-dependent prefactor that can be exactly calculated. Explicit results are discussed for Erd¨os-R´enyi and regular random graphs, both exhibiting a prefactor with a nonmonotonic behavior as a function of λ. These results contrast with rotationally invariant random matrices, where the index variance scales only as lnN, with an universal prefactor that is independent of λ. Numerical diagonalization results confirm the exactness of our approach and, in addition, strongly support the Gaussian nature of the index fluctuations.
publishDate 2015
dc.date.accessioned.fl_str_mv 2015-12-25T02:39:26Z
dc.date.issued.fl_str_mv 2015
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/131390
dc.identifier.issn.pt_BR.fl_str_mv 1539-3755
dc.identifier.nrb.pt_BR.fl_str_mv 000980939
identifier_str_mv 1539-3755
000980939
url http://hdl.handle.net/10183/131390
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 92, no. 4 (Oct. 2015), 042153, 9 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/131390/1/000980939.pdf
http://www.lume.ufrgs.br/bitstream/10183/131390/2/000980939.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/131390/3/000980939.pdf.jpg
bitstream.checksum.fl_str_mv b463b63da9074ec684ac86a84a03fee5
0e5133092bac19f32afac1f2ce250791
1da4939d56089ebff7bd85f95f6d2b44
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447605624176640