Using UAV for automatic lithological classification of open pit mining front
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/204390 |
Resumo: | Mine planning is dependent on the natural lithologic features and on the definition of their limits. The geological model is constantly updated during the life of the mine, based on all the information collected so far, plus the knowledge developed from the exploration stage up to the mine closure. As the mine progresses, the amount of available data increases, as well as the experience of the geological modeller and mine planner who deliver the short, medium, and long-term plans. This classical approach can benefit from the automation of the geological mapping on the mining faces and outcrops, improving the speed of repetitious work and avoiding exposure to intrinsic dangers like mining equipment, falling rocks, high wall proximity, among others. The use of photogrammetry to keep up with surface mining activities boarded in UAVs is a reality and the automated lithological classification using machine learning techniques is a low-cost evolution that might present accuracies above 90% of the contact zones and lithologies based on the automated dense point cloud classification when compared to the manual (or reality) classified model. |
id |
UFRGS-2_6d5fca79fdf7bac11e11d8e3986a4034 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/204390 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Beretta, Filipe SchmitzRodrigues, Áttila LeãesPeroni, Rodrigo de LemosCosta, Joao Felipe Coimbra Leite2020-01-16T04:10:35Z20192448-167Xhttp://hdl.handle.net/10183/204390001106539Mine planning is dependent on the natural lithologic features and on the definition of their limits. The geological model is constantly updated during the life of the mine, based on all the information collected so far, plus the knowledge developed from the exploration stage up to the mine closure. As the mine progresses, the amount of available data increases, as well as the experience of the geological modeller and mine planner who deliver the short, medium, and long-term plans. This classical approach can benefit from the automation of the geological mapping on the mining faces and outcrops, improving the speed of repetitious work and avoiding exposure to intrinsic dangers like mining equipment, falling rocks, high wall proximity, among others. The use of photogrammetry to keep up with surface mining activities boarded in UAVs is a reality and the automated lithological classification using machine learning techniques is a low-cost evolution that might present accuracies above 90% of the contact zones and lithologies based on the automated dense point cloud classification when compared to the manual (or reality) classified model.application/pdfengREM : international engineering journal. Ouro Preto, MG. Vol. 72, no. 1, suppl. 1 (Jan./Mar. 2019), p. 17-23Mineração a céu abertoVeículo aéreo não tripuladoMachine learningPhotogrammetryUAVLithological classificationUsing UAV for automatic lithological classification of open pit mining frontinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001106539.pdf.txt001106539.pdf.txtExtracted Texttext/plain25284http://www.lume.ufrgs.br/bitstream/10183/204390/2/001106539.pdf.txta23063da2b9abff40960836f89895fe5MD52ORIGINAL001106539.pdfTexto completo (inglês)application/pdf1722420http://www.lume.ufrgs.br/bitstream/10183/204390/1/001106539.pdfda06adc584cb7af0c8eda7e1c30e9ed2MD5110183/2043902021-03-09 04:54:21.721449oai:www.lume.ufrgs.br:10183/204390Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-03-09T07:54:21Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Using UAV for automatic lithological classification of open pit mining front |
title |
Using UAV for automatic lithological classification of open pit mining front |
spellingShingle |
Using UAV for automatic lithological classification of open pit mining front Beretta, Filipe Schmitz Mineração a céu aberto Veículo aéreo não tripulado Machine learning Photogrammetry UAV Lithological classification |
title_short |
Using UAV for automatic lithological classification of open pit mining front |
title_full |
Using UAV for automatic lithological classification of open pit mining front |
title_fullStr |
Using UAV for automatic lithological classification of open pit mining front |
title_full_unstemmed |
Using UAV for automatic lithological classification of open pit mining front |
title_sort |
Using UAV for automatic lithological classification of open pit mining front |
author |
Beretta, Filipe Schmitz |
author_facet |
Beretta, Filipe Schmitz Rodrigues, Áttila Leães Peroni, Rodrigo de Lemos Costa, Joao Felipe Coimbra Leite |
author_role |
author |
author2 |
Rodrigues, Áttila Leães Peroni, Rodrigo de Lemos Costa, Joao Felipe Coimbra Leite |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Beretta, Filipe Schmitz Rodrigues, Áttila Leães Peroni, Rodrigo de Lemos Costa, Joao Felipe Coimbra Leite |
dc.subject.por.fl_str_mv |
Mineração a céu aberto Veículo aéreo não tripulado |
topic |
Mineração a céu aberto Veículo aéreo não tripulado Machine learning Photogrammetry UAV Lithological classification |
dc.subject.eng.fl_str_mv |
Machine learning Photogrammetry UAV Lithological classification |
description |
Mine planning is dependent on the natural lithologic features and on the definition of their limits. The geological model is constantly updated during the life of the mine, based on all the information collected so far, plus the knowledge developed from the exploration stage up to the mine closure. As the mine progresses, the amount of available data increases, as well as the experience of the geological modeller and mine planner who deliver the short, medium, and long-term plans. This classical approach can benefit from the automation of the geological mapping on the mining faces and outcrops, improving the speed of repetitious work and avoiding exposure to intrinsic dangers like mining equipment, falling rocks, high wall proximity, among others. The use of photogrammetry to keep up with surface mining activities boarded in UAVs is a reality and the automated lithological classification using machine learning techniques is a low-cost evolution that might present accuracies above 90% of the contact zones and lithologies based on the automated dense point cloud classification when compared to the manual (or reality) classified model. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019 |
dc.date.accessioned.fl_str_mv |
2020-01-16T04:10:35Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/204390 |
dc.identifier.issn.pt_BR.fl_str_mv |
2448-167X |
dc.identifier.nrb.pt_BR.fl_str_mv |
001106539 |
identifier_str_mv |
2448-167X 001106539 |
url |
http://hdl.handle.net/10183/204390 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
REM : international engineering journal. Ouro Preto, MG. Vol. 72, no. 1, suppl. 1 (Jan./Mar. 2019), p. 17-23 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/204390/2/001106539.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/204390/1/001106539.pdf |
bitstream.checksum.fl_str_mv |
a23063da2b9abff40960836f89895fe5 da06adc584cb7af0c8eda7e1c30e9ed2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447703484628992 |