Using UAV for automatic lithological classification of open pit mining front

Detalhes bibliográficos
Autor(a) principal: Beretta, Filipe Schmitz
Data de Publicação: 2019
Outros Autores: Rodrigues, Áttila Leães, Peroni, Rodrigo de Lemos, Costa, Joao Felipe Coimbra Leite
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/204390
Resumo: Mine planning is dependent on the natural lithologic features and on the definition of their limits. The geological model is constantly updated during the life of the mine, based on all the information collected so far, plus the knowledge developed from the exploration stage up to the mine closure. As the mine progresses, the amount of available data increases, as well as the experience of the geological modeller and mine planner who deliver the short, medium, and long-term plans. This classical approach can benefit from the automation of the geological mapping on the mining faces and outcrops, improving the speed of repetitious work and avoiding exposure to intrinsic dangers like mining equipment, falling rocks, high wall proximity, among others. The use of photogrammetry to keep up with surface mining activities boarded in UAVs is a reality and the automated lithological classification using machine learning techniques is a low-cost evolution that might present accuracies above 90% of the contact zones and lithologies based on the automated dense point cloud classification when compared to the manual (or reality) classified model.
id UFRGS-2_6d5fca79fdf7bac11e11d8e3986a4034
oai_identifier_str oai:www.lume.ufrgs.br:10183/204390
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Beretta, Filipe SchmitzRodrigues, Áttila LeãesPeroni, Rodrigo de LemosCosta, Joao Felipe Coimbra Leite2020-01-16T04:10:35Z20192448-167Xhttp://hdl.handle.net/10183/204390001106539Mine planning is dependent on the natural lithologic features and on the definition of their limits. The geological model is constantly updated during the life of the mine, based on all the information collected so far, plus the knowledge developed from the exploration stage up to the mine closure. As the mine progresses, the amount of available data increases, as well as the experience of the geological modeller and mine planner who deliver the short, medium, and long-term plans. This classical approach can benefit from the automation of the geological mapping on the mining faces and outcrops, improving the speed of repetitious work and avoiding exposure to intrinsic dangers like mining equipment, falling rocks, high wall proximity, among others. The use of photogrammetry to keep up with surface mining activities boarded in UAVs is a reality and the automated lithological classification using machine learning techniques is a low-cost evolution that might present accuracies above 90% of the contact zones and lithologies based on the automated dense point cloud classification when compared to the manual (or reality) classified model.application/pdfengREM : international engineering journal. Ouro Preto, MG. Vol. 72, no. 1, suppl. 1 (Jan./Mar. 2019), p. 17-23Mineração a céu abertoVeículo aéreo não tripuladoMachine learningPhotogrammetryUAVLithological classificationUsing UAV for automatic lithological classification of open pit mining frontinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001106539.pdf.txt001106539.pdf.txtExtracted Texttext/plain25284http://www.lume.ufrgs.br/bitstream/10183/204390/2/001106539.pdf.txta23063da2b9abff40960836f89895fe5MD52ORIGINAL001106539.pdfTexto completo (inglês)application/pdf1722420http://www.lume.ufrgs.br/bitstream/10183/204390/1/001106539.pdfda06adc584cb7af0c8eda7e1c30e9ed2MD5110183/2043902021-03-09 04:54:21.721449oai:www.lume.ufrgs.br:10183/204390Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-03-09T07:54:21Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Using UAV for automatic lithological classification of open pit mining front
title Using UAV for automatic lithological classification of open pit mining front
spellingShingle Using UAV for automatic lithological classification of open pit mining front
Beretta, Filipe Schmitz
Mineração a céu aberto
Veículo aéreo não tripulado
Machine learning
Photogrammetry
UAV
Lithological classification
title_short Using UAV for automatic lithological classification of open pit mining front
title_full Using UAV for automatic lithological classification of open pit mining front
title_fullStr Using UAV for automatic lithological classification of open pit mining front
title_full_unstemmed Using UAV for automatic lithological classification of open pit mining front
title_sort Using UAV for automatic lithological classification of open pit mining front
author Beretta, Filipe Schmitz
author_facet Beretta, Filipe Schmitz
Rodrigues, Áttila Leães
Peroni, Rodrigo de Lemos
Costa, Joao Felipe Coimbra Leite
author_role author
author2 Rodrigues, Áttila Leães
Peroni, Rodrigo de Lemos
Costa, Joao Felipe Coimbra Leite
author2_role author
author
author
dc.contributor.author.fl_str_mv Beretta, Filipe Schmitz
Rodrigues, Áttila Leães
Peroni, Rodrigo de Lemos
Costa, Joao Felipe Coimbra Leite
dc.subject.por.fl_str_mv Mineração a céu aberto
Veículo aéreo não tripulado
topic Mineração a céu aberto
Veículo aéreo não tripulado
Machine learning
Photogrammetry
UAV
Lithological classification
dc.subject.eng.fl_str_mv Machine learning
Photogrammetry
UAV
Lithological classification
description Mine planning is dependent on the natural lithologic features and on the definition of their limits. The geological model is constantly updated during the life of the mine, based on all the information collected so far, plus the knowledge developed from the exploration stage up to the mine closure. As the mine progresses, the amount of available data increases, as well as the experience of the geological modeller and mine planner who deliver the short, medium, and long-term plans. This classical approach can benefit from the automation of the geological mapping on the mining faces and outcrops, improving the speed of repetitious work and avoiding exposure to intrinsic dangers like mining equipment, falling rocks, high wall proximity, among others. The use of photogrammetry to keep up with surface mining activities boarded in UAVs is a reality and the automated lithological classification using machine learning techniques is a low-cost evolution that might present accuracies above 90% of the contact zones and lithologies based on the automated dense point cloud classification when compared to the manual (or reality) classified model.
publishDate 2019
dc.date.issued.fl_str_mv 2019
dc.date.accessioned.fl_str_mv 2020-01-16T04:10:35Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/204390
dc.identifier.issn.pt_BR.fl_str_mv 2448-167X
dc.identifier.nrb.pt_BR.fl_str_mv 001106539
identifier_str_mv 2448-167X
001106539
url http://hdl.handle.net/10183/204390
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv REM : international engineering journal. Ouro Preto, MG. Vol. 72, no. 1, suppl. 1 (Jan./Mar. 2019), p. 17-23
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/204390/2/001106539.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/204390/1/001106539.pdf
bitstream.checksum.fl_str_mv a23063da2b9abff40960836f89895fe5
da06adc584cb7af0c8eda7e1c30e9ed2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447703484628992