Categorization in a Hopfield network trained with weighted examples : extensive number of concepts
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/103710 |
Resumo: | We consider the categorization problem in a Hopfield network with an extensive number of concepts p =αN and trained with s examples of weight λτ, T=1, . . . ,s in the presence of synaptic noise represented by a dimensionless ‘‘temperature’’ T. We find that the retrieval capacity of an example with weight λ₁, and the corresponding categorization error, depend also on the arithmetic mean λm of the other weights. The categorization process is similar to that in a network trained with Hebb’s rule, but for λ₁/λm>1 the retrieval phase is enhanced. We present the phase diagram in the T-α plane, together with the de Almeida–Thouless line of instability. The phase diagrams in the α-s plane are discussed in the absence of synaptic noise and several values of the correlation parameter b. |
id |
UFRGS-2_78b0930b26897f1bad9d7d896c651d1a |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/103710 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Costa, Rogerio Adeodato LimaTheumann, Alba Graciela Rivas de2014-09-24T02:12:15Z20001063-651Xhttp://hdl.handle.net/10183/103710000275730We consider the categorization problem in a Hopfield network with an extensive number of concepts p =αN and trained with s examples of weight λτ, T=1, . . . ,s in the presence of synaptic noise represented by a dimensionless ‘‘temperature’’ T. We find that the retrieval capacity of an example with weight λ₁, and the corresponding categorization error, depend also on the arithmetic mean λm of the other weights. The categorization process is similar to that in a network trained with Hebb’s rule, but for λ₁/λm>1 the retrieval phase is enhanced. We present the phase diagram in the T-α plane, together with the de Almeida–Thouless line of instability. The phase diagrams in the α-s plane are discussed in the absence of synaptic noise and several values of the correlation parameter b.application/pdfengPhysical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. Melville. Vol. 61, no. 5B (May 2000), p. 4860-4865Fenomenos criticosRedes neurais de hopfieldAprendendo por exemploTransições magnéticasCategorization in a Hopfield network trained with weighted examples : extensive number of conceptsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000275730.pdf000275730.pdfTexto completo (inglês)application/pdf87928http://www.lume.ufrgs.br/bitstream/10183/103710/1/000275730.pdf5c8e8ae6de1885f694ed4d42c7b21b74MD51TEXT000275730.pdf.txt000275730.pdf.txtExtracted Texttext/plain18573http://www.lume.ufrgs.br/bitstream/10183/103710/2/000275730.pdf.txt1cedc67fb21d33925144442029139954MD52THUMBNAIL000275730.pdf.jpg000275730.pdf.jpgGenerated Thumbnailimage/jpeg2006http://www.lume.ufrgs.br/bitstream/10183/103710/3/000275730.pdf.jpg424b19ac1d0f0815a768b2fb06d4e33bMD5310183/1037102018-10-08 07:57:36.334oai:www.lume.ufrgs.br:10183/103710Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2018-10-08T10:57:36Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Categorization in a Hopfield network trained with weighted examples : extensive number of concepts |
title |
Categorization in a Hopfield network trained with weighted examples : extensive number of concepts |
spellingShingle |
Categorization in a Hopfield network trained with weighted examples : extensive number of concepts Costa, Rogerio Adeodato Lima Fenomenos criticos Redes neurais de hopfield Aprendendo por exemplo Transições magnéticas |
title_short |
Categorization in a Hopfield network trained with weighted examples : extensive number of concepts |
title_full |
Categorization in a Hopfield network trained with weighted examples : extensive number of concepts |
title_fullStr |
Categorization in a Hopfield network trained with weighted examples : extensive number of concepts |
title_full_unstemmed |
Categorization in a Hopfield network trained with weighted examples : extensive number of concepts |
title_sort |
Categorization in a Hopfield network trained with weighted examples : extensive number of concepts |
author |
Costa, Rogerio Adeodato Lima |
author_facet |
Costa, Rogerio Adeodato Lima Theumann, Alba Graciela Rivas de |
author_role |
author |
author2 |
Theumann, Alba Graciela Rivas de |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Costa, Rogerio Adeodato Lima Theumann, Alba Graciela Rivas de |
dc.subject.por.fl_str_mv |
Fenomenos criticos Redes neurais de hopfield Aprendendo por exemplo Transições magnéticas |
topic |
Fenomenos criticos Redes neurais de hopfield Aprendendo por exemplo Transições magnéticas |
description |
We consider the categorization problem in a Hopfield network with an extensive number of concepts p =αN and trained with s examples of weight λτ, T=1, . . . ,s in the presence of synaptic noise represented by a dimensionless ‘‘temperature’’ T. We find that the retrieval capacity of an example with weight λ₁, and the corresponding categorization error, depend also on the arithmetic mean λm of the other weights. The categorization process is similar to that in a network trained with Hebb’s rule, but for λ₁/λm>1 the retrieval phase is enhanced. We present the phase diagram in the T-α plane, together with the de Almeida–Thouless line of instability. The phase diagrams in the α-s plane are discussed in the absence of synaptic noise and several values of the correlation parameter b. |
publishDate |
2000 |
dc.date.issued.fl_str_mv |
2000 |
dc.date.accessioned.fl_str_mv |
2014-09-24T02:12:15Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/103710 |
dc.identifier.issn.pt_BR.fl_str_mv |
1063-651X |
dc.identifier.nrb.pt_BR.fl_str_mv |
000275730 |
identifier_str_mv |
1063-651X 000275730 |
url |
http://hdl.handle.net/10183/103710 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. Melville. Vol. 61, no. 5B (May 2000), p. 4860-4865 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/103710/1/000275730.pdf http://www.lume.ufrgs.br/bitstream/10183/103710/2/000275730.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/103710/3/000275730.pdf.jpg |
bitstream.checksum.fl_str_mv |
5c8e8ae6de1885f694ed4d42c7b21b74 1cedc67fb21d33925144442029139954 424b19ac1d0f0815a768b2fb06d4e33b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447560822718464 |