Categorization in a Hopfield network trained with weighted examples : extensive number of concepts

Detalhes bibliográficos
Autor(a) principal: Costa, Rogerio Adeodato Lima
Data de Publicação: 2000
Outros Autores: Theumann, Alba Graciela Rivas de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/103710
Resumo: We consider the categorization problem in a Hopfield network with an extensive number of concepts p =αN and trained with s examples of weight λτ, T=1, . . . ,s in the presence of synaptic noise represented by a dimensionless ‘‘temperature’’ T. We find that the retrieval capacity of an example with weight λ₁, and the corresponding categorization error, depend also on the arithmetic mean λm of the other weights. The categorization process is similar to that in a network trained with Hebb’s rule, but for λ₁/λm>1 the retrieval phase is enhanced. We present the phase diagram in the T-α plane, together with the de Almeida–Thouless line of instability. The phase diagrams in the α-s plane are discussed in the absence of synaptic noise and several values of the correlation parameter b.
id UFRGS-2_78b0930b26897f1bad9d7d896c651d1a
oai_identifier_str oai:www.lume.ufrgs.br:10183/103710
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Costa, Rogerio Adeodato LimaTheumann, Alba Graciela Rivas de2014-09-24T02:12:15Z20001063-651Xhttp://hdl.handle.net/10183/103710000275730We consider the categorization problem in a Hopfield network with an extensive number of concepts p =αN and trained with s examples of weight λτ, T=1, . . . ,s in the presence of synaptic noise represented by a dimensionless ‘‘temperature’’ T. We find that the retrieval capacity of an example with weight λ₁, and the corresponding categorization error, depend also on the arithmetic mean λm of the other weights. The categorization process is similar to that in a network trained with Hebb’s rule, but for λ₁/λm>1 the retrieval phase is enhanced. We present the phase diagram in the T-α plane, together with the de Almeida–Thouless line of instability. The phase diagrams in the α-s plane are discussed in the absence of synaptic noise and several values of the correlation parameter b.application/pdfengPhysical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. Melville. Vol. 61, no. 5B (May 2000), p. 4860-4865Fenomenos criticosRedes neurais de hopfieldAprendendo por exemploTransições magnéticasCategorization in a Hopfield network trained with weighted examples : extensive number of conceptsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000275730.pdf000275730.pdfTexto completo (inglês)application/pdf87928http://www.lume.ufrgs.br/bitstream/10183/103710/1/000275730.pdf5c8e8ae6de1885f694ed4d42c7b21b74MD51TEXT000275730.pdf.txt000275730.pdf.txtExtracted Texttext/plain18573http://www.lume.ufrgs.br/bitstream/10183/103710/2/000275730.pdf.txt1cedc67fb21d33925144442029139954MD52THUMBNAIL000275730.pdf.jpg000275730.pdf.jpgGenerated Thumbnailimage/jpeg2006http://www.lume.ufrgs.br/bitstream/10183/103710/3/000275730.pdf.jpg424b19ac1d0f0815a768b2fb06d4e33bMD5310183/1037102018-10-08 07:57:36.334oai:www.lume.ufrgs.br:10183/103710Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2018-10-08T10:57:36Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Categorization in a Hopfield network trained with weighted examples : extensive number of concepts
title Categorization in a Hopfield network trained with weighted examples : extensive number of concepts
spellingShingle Categorization in a Hopfield network trained with weighted examples : extensive number of concepts
Costa, Rogerio Adeodato Lima
Fenomenos criticos
Redes neurais de hopfield
Aprendendo por exemplo
Transições magnéticas
title_short Categorization in a Hopfield network trained with weighted examples : extensive number of concepts
title_full Categorization in a Hopfield network trained with weighted examples : extensive number of concepts
title_fullStr Categorization in a Hopfield network trained with weighted examples : extensive number of concepts
title_full_unstemmed Categorization in a Hopfield network trained with weighted examples : extensive number of concepts
title_sort Categorization in a Hopfield network trained with weighted examples : extensive number of concepts
author Costa, Rogerio Adeodato Lima
author_facet Costa, Rogerio Adeodato Lima
Theumann, Alba Graciela Rivas de
author_role author
author2 Theumann, Alba Graciela Rivas de
author2_role author
dc.contributor.author.fl_str_mv Costa, Rogerio Adeodato Lima
Theumann, Alba Graciela Rivas de
dc.subject.por.fl_str_mv Fenomenos criticos
Redes neurais de hopfield
Aprendendo por exemplo
Transições magnéticas
topic Fenomenos criticos
Redes neurais de hopfield
Aprendendo por exemplo
Transições magnéticas
description We consider the categorization problem in a Hopfield network with an extensive number of concepts p =αN and trained with s examples of weight λτ, T=1, . . . ,s in the presence of synaptic noise represented by a dimensionless ‘‘temperature’’ T. We find that the retrieval capacity of an example with weight λ₁, and the corresponding categorization error, depend also on the arithmetic mean λm of the other weights. The categorization process is similar to that in a network trained with Hebb’s rule, but for λ₁/λm>1 the retrieval phase is enhanced. We present the phase diagram in the T-α plane, together with the de Almeida–Thouless line of instability. The phase diagrams in the α-s plane are discussed in the absence of synaptic noise and several values of the correlation parameter b.
publishDate 2000
dc.date.issued.fl_str_mv 2000
dc.date.accessioned.fl_str_mv 2014-09-24T02:12:15Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/103710
dc.identifier.issn.pt_BR.fl_str_mv 1063-651X
dc.identifier.nrb.pt_BR.fl_str_mv 000275730
identifier_str_mv 1063-651X
000275730
url http://hdl.handle.net/10183/103710
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. Melville. Vol. 61, no. 5B (May 2000), p. 4860-4865
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/103710/1/000275730.pdf
http://www.lume.ufrgs.br/bitstream/10183/103710/2/000275730.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/103710/3/000275730.pdf.jpg
bitstream.checksum.fl_str_mv 5c8e8ae6de1885f694ed4d42c7b21b74
1cedc67fb21d33925144442029139954
424b19ac1d0f0815a768b2fb06d4e33b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447560822718464