Optimally adapted multistate neural networks trained with noise

Detalhes bibliográficos
Autor(a) principal: Erichsen Junior, Rubem
Data de Publicação: 1999
Outros Autores: Theumann, Walter Karl
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/103647
Resumo: The principle of adaptation in a noisy retrieval environment is extended here to a diluted attractor neural network of Q-state neurons trained with noisy data. The network is adapted to an appropriate noisy training overlap and training activity, which are determined self-consistently by the optimized retrieval attractor overlap and activity. The optimized storage capacity and the corresponding retriever overlap are considerably enhanced by an adequate threshold in the states. Explicit results for improved optimal performance and new retriever phase diagrams are obtained for Q=3 and Q=4, with coexisting phases over a wide range of thresholds. Most of the interesting results are stable to replica-symmetry-breaking fluctuations.
id UFRGS-2_8e0b1be0daab2fa17b66eb6b0bc48b34
oai_identifier_str oai:www.lume.ufrgs.br:10183/103647
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Erichsen Junior, RubemTheumann, Walter Karl2014-09-23T02:12:35Z19991063-651Xhttp://hdl.handle.net/10183/103647000235925The principle of adaptation in a noisy retrieval environment is extended here to a diluted attractor neural network of Q-state neurons trained with noisy data. The network is adapted to an appropriate noisy training overlap and training activity, which are determined self-consistently by the optimized retrieval attractor overlap and activity. The optimized storage capacity and the corresponding retriever overlap are considerably enhanced by an adequate threshold in the states. Explicit results for improved optimal performance and new retriever phase diagrams are obtained for Q=3 and Q=4, with coexisting phases over a wide range of thresholds. Most of the interesting results are stable to replica-symmetry-breaking fluctuations.application/pdfengPhysical Review. E, Statistical physics, plasmas, fluids and related interdisciplinary topics. New York. Vol. 59, no. 1 (Jan. 1999), p. 947-955Física estatísticaRedes neuraisBiofísicaTransformacoes de ordem-desordemOptimally adapted multistate neural networks trained with noiseEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000235925.pdf000235925.pdfTexto completo (inglês)application/pdf145621http://www.lume.ufrgs.br/bitstream/10183/103647/1/000235925.pdf04755f5e595c4a8ab5e08eb5b1aae329MD51TEXT000235925.pdf.txt000235925.pdf.txtExtracted Texttext/plain44565http://www.lume.ufrgs.br/bitstream/10183/103647/2/000235925.pdf.txta9e5db34131faec6f217a78a2443dda5MD52THUMBNAIL000235925.pdf.jpg000235925.pdf.jpgGenerated Thumbnailimage/jpeg2048http://www.lume.ufrgs.br/bitstream/10183/103647/3/000235925.pdf.jpg72f0ec28eef2364bedb3783b668926d5MD5310183/1036472018-10-05 08:51:32.894oai:www.lume.ufrgs.br:10183/103647Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2018-10-05T11:51:32Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Optimally adapted multistate neural networks trained with noise
title Optimally adapted multistate neural networks trained with noise
spellingShingle Optimally adapted multistate neural networks trained with noise
Erichsen Junior, Rubem
Física estatística
Redes neurais
Biofísica
Transformacoes de ordem-desordem
title_short Optimally adapted multistate neural networks trained with noise
title_full Optimally adapted multistate neural networks trained with noise
title_fullStr Optimally adapted multistate neural networks trained with noise
title_full_unstemmed Optimally adapted multistate neural networks trained with noise
title_sort Optimally adapted multistate neural networks trained with noise
author Erichsen Junior, Rubem
author_facet Erichsen Junior, Rubem
Theumann, Walter Karl
author_role author
author2 Theumann, Walter Karl
author2_role author
dc.contributor.author.fl_str_mv Erichsen Junior, Rubem
Theumann, Walter Karl
dc.subject.por.fl_str_mv Física estatística
Redes neurais
Biofísica
Transformacoes de ordem-desordem
topic Física estatística
Redes neurais
Biofísica
Transformacoes de ordem-desordem
description The principle of adaptation in a noisy retrieval environment is extended here to a diluted attractor neural network of Q-state neurons trained with noisy data. The network is adapted to an appropriate noisy training overlap and training activity, which are determined self-consistently by the optimized retrieval attractor overlap and activity. The optimized storage capacity and the corresponding retriever overlap are considerably enhanced by an adequate threshold in the states. Explicit results for improved optimal performance and new retriever phase diagrams are obtained for Q=3 and Q=4, with coexisting phases over a wide range of thresholds. Most of the interesting results are stable to replica-symmetry-breaking fluctuations.
publishDate 1999
dc.date.issued.fl_str_mv 1999
dc.date.accessioned.fl_str_mv 2014-09-23T02:12:35Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/103647
dc.identifier.issn.pt_BR.fl_str_mv 1063-651X
dc.identifier.nrb.pt_BR.fl_str_mv 000235925
identifier_str_mv 1063-651X
000235925
url http://hdl.handle.net/10183/103647
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical Review. E, Statistical physics, plasmas, fluids and related interdisciplinary topics. New York. Vol. 59, no. 1 (Jan. 1999), p. 947-955
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/103647/1/000235925.pdf
http://www.lume.ufrgs.br/bitstream/10183/103647/2/000235925.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/103647/3/000235925.pdf.jpg
bitstream.checksum.fl_str_mv 04755f5e595c4a8ab5e08eb5b1aae329
a9e5db34131faec6f217a78a2443dda5
72f0ec28eef2364bedb3783b668926d5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447560339324928