Optimally adapted multistate neural networks trained with noise
Autor(a) principal: | |
---|---|
Data de Publicação: | 1999 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/103647 |
Resumo: | The principle of adaptation in a noisy retrieval environment is extended here to a diluted attractor neural network of Q-state neurons trained with noisy data. The network is adapted to an appropriate noisy training overlap and training activity, which are determined self-consistently by the optimized retrieval attractor overlap and activity. The optimized storage capacity and the corresponding retriever overlap are considerably enhanced by an adequate threshold in the states. Explicit results for improved optimal performance and new retriever phase diagrams are obtained for Q=3 and Q=4, with coexisting phases over a wide range of thresholds. Most of the interesting results are stable to replica-symmetry-breaking fluctuations. |
id |
UFRGS-2_8e0b1be0daab2fa17b66eb6b0bc48b34 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/103647 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Erichsen Junior, RubemTheumann, Walter Karl2014-09-23T02:12:35Z19991063-651Xhttp://hdl.handle.net/10183/103647000235925The principle of adaptation in a noisy retrieval environment is extended here to a diluted attractor neural network of Q-state neurons trained with noisy data. The network is adapted to an appropriate noisy training overlap and training activity, which are determined self-consistently by the optimized retrieval attractor overlap and activity. The optimized storage capacity and the corresponding retriever overlap are considerably enhanced by an adequate threshold in the states. Explicit results for improved optimal performance and new retriever phase diagrams are obtained for Q=3 and Q=4, with coexisting phases over a wide range of thresholds. Most of the interesting results are stable to replica-symmetry-breaking fluctuations.application/pdfengPhysical Review. E, Statistical physics, plasmas, fluids and related interdisciplinary topics. New York. Vol. 59, no. 1 (Jan. 1999), p. 947-955Física estatísticaRedes neuraisBiofísicaTransformacoes de ordem-desordemOptimally adapted multistate neural networks trained with noiseEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000235925.pdf000235925.pdfTexto completo (inglês)application/pdf145621http://www.lume.ufrgs.br/bitstream/10183/103647/1/000235925.pdf04755f5e595c4a8ab5e08eb5b1aae329MD51TEXT000235925.pdf.txt000235925.pdf.txtExtracted Texttext/plain44565http://www.lume.ufrgs.br/bitstream/10183/103647/2/000235925.pdf.txta9e5db34131faec6f217a78a2443dda5MD52THUMBNAIL000235925.pdf.jpg000235925.pdf.jpgGenerated Thumbnailimage/jpeg2048http://www.lume.ufrgs.br/bitstream/10183/103647/3/000235925.pdf.jpg72f0ec28eef2364bedb3783b668926d5MD5310183/1036472018-10-05 08:51:32.894oai:www.lume.ufrgs.br:10183/103647Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2018-10-05T11:51:32Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Optimally adapted multistate neural networks trained with noise |
title |
Optimally adapted multistate neural networks trained with noise |
spellingShingle |
Optimally adapted multistate neural networks trained with noise Erichsen Junior, Rubem Física estatística Redes neurais Biofísica Transformacoes de ordem-desordem |
title_short |
Optimally adapted multistate neural networks trained with noise |
title_full |
Optimally adapted multistate neural networks trained with noise |
title_fullStr |
Optimally adapted multistate neural networks trained with noise |
title_full_unstemmed |
Optimally adapted multistate neural networks trained with noise |
title_sort |
Optimally adapted multistate neural networks trained with noise |
author |
Erichsen Junior, Rubem |
author_facet |
Erichsen Junior, Rubem Theumann, Walter Karl |
author_role |
author |
author2 |
Theumann, Walter Karl |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Erichsen Junior, Rubem Theumann, Walter Karl |
dc.subject.por.fl_str_mv |
Física estatística Redes neurais Biofísica Transformacoes de ordem-desordem |
topic |
Física estatística Redes neurais Biofísica Transformacoes de ordem-desordem |
description |
The principle of adaptation in a noisy retrieval environment is extended here to a diluted attractor neural network of Q-state neurons trained with noisy data. The network is adapted to an appropriate noisy training overlap and training activity, which are determined self-consistently by the optimized retrieval attractor overlap and activity. The optimized storage capacity and the corresponding retriever overlap are considerably enhanced by an adequate threshold in the states. Explicit results for improved optimal performance and new retriever phase diagrams are obtained for Q=3 and Q=4, with coexisting phases over a wide range of thresholds. Most of the interesting results are stable to replica-symmetry-breaking fluctuations. |
publishDate |
1999 |
dc.date.issued.fl_str_mv |
1999 |
dc.date.accessioned.fl_str_mv |
2014-09-23T02:12:35Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/103647 |
dc.identifier.issn.pt_BR.fl_str_mv |
1063-651X |
dc.identifier.nrb.pt_BR.fl_str_mv |
000235925 |
identifier_str_mv |
1063-651X 000235925 |
url |
http://hdl.handle.net/10183/103647 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Physical Review. E, Statistical physics, plasmas, fluids and related interdisciplinary topics. New York. Vol. 59, no. 1 (Jan. 1999), p. 947-955 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/103647/1/000235925.pdf http://www.lume.ufrgs.br/bitstream/10183/103647/2/000235925.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/103647/3/000235925.pdf.jpg |
bitstream.checksum.fl_str_mv |
04755f5e595c4a8ab5e08eb5b1aae329 a9e5db34131faec6f217a78a2443dda5 72f0ec28eef2364bedb3783b668926d5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447560339324928 |