Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/159798 |
Resumo: | Background: Autosomal dominant polycystic kidney disease (ADPKD) causes progressive loss of renal function in adults as a consequence of the accumulation of cysts. ADPKD is the most common genetic cause of end-stage renal disease. Mutations in polycystin-1 occur in 87% of cases of ADPKD and mutations in polycystin-2 are found in 12% of ADPKD patients. The complexity of ADPKD has hampered efforts to identify the mechanisms underlying its pathogenesis. No current FDA (Federal Drug Administration)-approved therapies ameliorate ADPKD progression. Results: We used the de Almeida laboratory’s sensitive new transcriptogram method for whole-genome gene expression data analysis to analyze microarray data from cell lines developed from cell isolates of normal kidney and of both non-cystic nephrons and cysts from the kidney of a patient with ADPKD. We compared results obtained using standard Ingenuity Volcano plot analysis, Gene Set Enrichment Analysis (GSEA) and transcriptogram analysis. Transcriptogram analysis confirmed the findings of Ingenuity, GSEA, and published analysis of ADPKD kidney data and also identified multiple new expression changes in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways related to cell growth, cell death, genetic information processing, nucleotide metabolism, signal transduction, immune response, response to stimulus, cellular processes, ion homeostasis and transport and cofactors, vitamins, amino acids, energy, carbohydrates, drugs, lipids, and glycans. Transcriptogram analysis also provides significance metrics which allow us to prioritize further study of these pathways. Conclusions: Transcriptogram analysis identifies novel pathways altered in ADPKD, providing new avenues to identify both ADPKD’s mechanisms of pathogenesis and pharmaceutical targets to ameliorate the progression of the disease. |
id |
UFRGS-2_a6f6e24f9812f1058ca89dfaa5bf259c |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/159798 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Almeida, Rita Maria Cunha deClendenon, Sherry G.Richards, William GrahamBoedigheimer, Michael J.Damore, Michael A.Rossetti, SandroHarris, Peter C.Herbert, Brittney SheaXu, Wei MinWandinger-Ness, AngelaWard, Heather H.Glazier, James AlexanderBacallao, Robert L.2017-06-20T02:34:01Z20161479-7364http://hdl.handle.net/10183/159798001022809Background: Autosomal dominant polycystic kidney disease (ADPKD) causes progressive loss of renal function in adults as a consequence of the accumulation of cysts. ADPKD is the most common genetic cause of end-stage renal disease. Mutations in polycystin-1 occur in 87% of cases of ADPKD and mutations in polycystin-2 are found in 12% of ADPKD patients. The complexity of ADPKD has hampered efforts to identify the mechanisms underlying its pathogenesis. No current FDA (Federal Drug Administration)-approved therapies ameliorate ADPKD progression. Results: We used the de Almeida laboratory’s sensitive new transcriptogram method for whole-genome gene expression data analysis to analyze microarray data from cell lines developed from cell isolates of normal kidney and of both non-cystic nephrons and cysts from the kidney of a patient with ADPKD. We compared results obtained using standard Ingenuity Volcano plot analysis, Gene Set Enrichment Analysis (GSEA) and transcriptogram analysis. Transcriptogram analysis confirmed the findings of Ingenuity, GSEA, and published analysis of ADPKD kidney data and also identified multiple new expression changes in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways related to cell growth, cell death, genetic information processing, nucleotide metabolism, signal transduction, immune response, response to stimulus, cellular processes, ion homeostasis and transport and cofactors, vitamins, amino acids, energy, carbohydrates, drugs, lipids, and glycans. Transcriptogram analysis also provides significance metrics which allow us to prioritize further study of these pathways. Conclusions: Transcriptogram analysis identifies novel pathways altered in ADPKD, providing new avenues to identify both ADPKD’s mechanisms of pathogenesis and pharmaceutical targets to ameliorate the progression of the disease.application/pdfengHuman Genomics. London. Vol. 10 (Nov. 2016), 37, 24 p.Rim policístico autossômico dominanteTranscriptomaBioinformáticaExpressão gênicaKidneyTranscriptogramCystic kidney diseaseAutosomal dominant polycystic kidney diseaseBioinformaticsPathway identificationTranscriptome analysis reveals manifold mechanisms of cyst development in ADPKDEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001022809.pdf001022809.pdfTexto completo (inglês)application/pdf3525353http://www.lume.ufrgs.br/bitstream/10183/159798/1/001022809.pdf2fef0309da11f3169bbc13a52d42b664MD51TEXT001022809.pdf.txt001022809.pdf.txtExtracted Texttext/plain102081http://www.lume.ufrgs.br/bitstream/10183/159798/2/001022809.pdf.txt60ac22d9f1cd5bf05e8bb0b9aaf7dc51MD5210183/1597982024-03-29 06:19:37.782112oai:www.lume.ufrgs.br:10183/159798Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-03-29T09:19:37Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD |
title |
Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD |
spellingShingle |
Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD Almeida, Rita Maria Cunha de Rim policístico autossômico dominante Transcriptoma Bioinformática Expressão gênica Kidney Transcriptogram Cystic kidney disease Autosomal dominant polycystic kidney disease Bioinformatics Pathway identification |
title_short |
Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD |
title_full |
Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD |
title_fullStr |
Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD |
title_full_unstemmed |
Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD |
title_sort |
Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD |
author |
Almeida, Rita Maria Cunha de |
author_facet |
Almeida, Rita Maria Cunha de Clendenon, Sherry G. Richards, William Graham Boedigheimer, Michael J. Damore, Michael A. Rossetti, Sandro Harris, Peter C. Herbert, Brittney Shea Xu, Wei Min Wandinger-Ness, Angela Ward, Heather H. Glazier, James Alexander Bacallao, Robert L. |
author_role |
author |
author2 |
Clendenon, Sherry G. Richards, William Graham Boedigheimer, Michael J. Damore, Michael A. Rossetti, Sandro Harris, Peter C. Herbert, Brittney Shea Xu, Wei Min Wandinger-Ness, Angela Ward, Heather H. Glazier, James Alexander Bacallao, Robert L. |
author2_role |
author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Almeida, Rita Maria Cunha de Clendenon, Sherry G. Richards, William Graham Boedigheimer, Michael J. Damore, Michael A. Rossetti, Sandro Harris, Peter C. Herbert, Brittney Shea Xu, Wei Min Wandinger-Ness, Angela Ward, Heather H. Glazier, James Alexander Bacallao, Robert L. |
dc.subject.por.fl_str_mv |
Rim policístico autossômico dominante Transcriptoma Bioinformática Expressão gênica |
topic |
Rim policístico autossômico dominante Transcriptoma Bioinformática Expressão gênica Kidney Transcriptogram Cystic kidney disease Autosomal dominant polycystic kidney disease Bioinformatics Pathway identification |
dc.subject.eng.fl_str_mv |
Kidney Transcriptogram Cystic kidney disease Autosomal dominant polycystic kidney disease Bioinformatics Pathway identification |
description |
Background: Autosomal dominant polycystic kidney disease (ADPKD) causes progressive loss of renal function in adults as a consequence of the accumulation of cysts. ADPKD is the most common genetic cause of end-stage renal disease. Mutations in polycystin-1 occur in 87% of cases of ADPKD and mutations in polycystin-2 are found in 12% of ADPKD patients. The complexity of ADPKD has hampered efforts to identify the mechanisms underlying its pathogenesis. No current FDA (Federal Drug Administration)-approved therapies ameliorate ADPKD progression. Results: We used the de Almeida laboratory’s sensitive new transcriptogram method for whole-genome gene expression data analysis to analyze microarray data from cell lines developed from cell isolates of normal kidney and of both non-cystic nephrons and cysts from the kidney of a patient with ADPKD. We compared results obtained using standard Ingenuity Volcano plot analysis, Gene Set Enrichment Analysis (GSEA) and transcriptogram analysis. Transcriptogram analysis confirmed the findings of Ingenuity, GSEA, and published analysis of ADPKD kidney data and also identified multiple new expression changes in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways related to cell growth, cell death, genetic information processing, nucleotide metabolism, signal transduction, immune response, response to stimulus, cellular processes, ion homeostasis and transport and cofactors, vitamins, amino acids, energy, carbohydrates, drugs, lipids, and glycans. Transcriptogram analysis also provides significance metrics which allow us to prioritize further study of these pathways. Conclusions: Transcriptogram analysis identifies novel pathways altered in ADPKD, providing new avenues to identify both ADPKD’s mechanisms of pathogenesis and pharmaceutical targets to ameliorate the progression of the disease. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016 |
dc.date.accessioned.fl_str_mv |
2017-06-20T02:34:01Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/159798 |
dc.identifier.issn.pt_BR.fl_str_mv |
1479-7364 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001022809 |
identifier_str_mv |
1479-7364 001022809 |
url |
http://hdl.handle.net/10183/159798 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Human Genomics. London. Vol. 10 (Nov. 2016), 37, 24 p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/159798/1/001022809.pdf http://www.lume.ufrgs.br/bitstream/10183/159798/2/001022809.pdf.txt |
bitstream.checksum.fl_str_mv |
2fef0309da11f3169bbc13a52d42b664 60ac22d9f1cd5bf05e8bb0b9aaf7dc51 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447633825628160 |