Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/101845 |
Resumo: | In this work, we study the critical behavior of second-order points, specifically the Lifshitz point (LP) of a three-dimensional Ising model with axial competing interactions [the axial-next-nearest-neighbor Ising (ANNNI) model], using time-dependent Monte Carlo simulations. We use a recently developed technique that helps us localize the critical temperature corresponding to the best power law for magnetization decay over time: (M)m0=1 ∼ t −β/νz, which is expected of simulations starting from initially ordered states. We obtain original results for the dynamic critical exponent z, evaluated from the behavior of the ratio F2(t ) = (M2) m0=0/ (M)2 m0=1 ∼ t 3/z, along the critical line up to the LP. We explore all the critical exponents of the LP in detail, including the dynamic critical exponent θ that characterizes the initial slip of magnetization and the global persistence exponent θg associated with the probability P(t) that magnetization keeps its signal up to time t. Our estimates for the dynamic critical exponents at the Lifshitz point are z = 2.34(2) and θg = 0.336(4), values that are very different from those of the three-dimensional Ising model (the ANNNI model without the next-nearest-neighbor interactions at the z axis, i.e., J2 = 0), i.e., z ≈ 2.07 and θg ≈ 0.38. We also present estimates for the static critical exponents β and ν, obtained from extended time-dependent scaling relations. Our results for static exponents are in good agreement with previous works. |
id |
UFRGS-2_a8f958ec521be14af4c1dbe4c7278928 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/101845 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Silva, Roberto daAlves Junior, NelsonFelício, José Roberto Drugovich de2014-08-26T09:26:23Z20131539-3755http://hdl.handle.net/10183/101845000897736In this work, we study the critical behavior of second-order points, specifically the Lifshitz point (LP) of a three-dimensional Ising model with axial competing interactions [the axial-next-nearest-neighbor Ising (ANNNI) model], using time-dependent Monte Carlo simulations. We use a recently developed technique that helps us localize the critical temperature corresponding to the best power law for magnetization decay over time: (M)m0=1 ∼ t −β/νz, which is expected of simulations starting from initially ordered states. We obtain original results for the dynamic critical exponent z, evaluated from the behavior of the ratio F2(t ) = (M2) m0=0/ (M)2 m0=1 ∼ t 3/z, along the critical line up to the LP. We explore all the critical exponents of the LP in detail, including the dynamic critical exponent θ that characterizes the initial slip of magnetization and the global persistence exponent θg associated with the probability P(t) that magnetization keeps its signal up to time t. Our estimates for the dynamic critical exponents at the Lifshitz point are z = 2.34(2) and θg = 0.336(4), values that are very different from those of the three-dimensional Ising model (the ANNNI model without the next-nearest-neighbor interactions at the z axis, i.e., J2 = 0), i.e., z ≈ 2.07 and θg ≈ 0.38. We also present estimates for the static critical exponents β and ν, obtained from extended time-dependent scaling relations. Our results for static exponents are in good agreement with previous works.application/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Vol. 87, no. 1 (Jan. 2013), 012131, 10 p.Método de Monte CarloModelo de isingMagnetizaçãoPontos criticosTime-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising modelEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000897736.pdf.txt000897736.pdf.txtExtracted Texttext/plain47404http://www.lume.ufrgs.br/bitstream/10183/101845/2/000897736.pdf.txte3399d1beda3b2892c5115845e1bb185MD52ORIGINAL000897736.pdf000897736.pdfTexto completo (inglês)application/pdf1192331http://www.lume.ufrgs.br/bitstream/10183/101845/1/000897736.pdf701c140c82388894281deab538e1f77aMD51THUMBNAIL000897736.pdf.jpg000897736.pdf.jpgGenerated Thumbnailimage/jpeg2096http://www.lume.ufrgs.br/bitstream/10183/101845/3/000897736.pdf.jpg4a6a4227a8df9afae2e1a3fb4c221c1eMD5310183/1018452018-10-22 09:30:23.253oai:www.lume.ufrgs.br:10183/101845Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2018-10-22T12:30:23Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model |
title |
Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model |
spellingShingle |
Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model Silva, Roberto da Método de Monte Carlo Modelo de ising Magnetização Pontos criticos |
title_short |
Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model |
title_full |
Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model |
title_fullStr |
Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model |
title_full_unstemmed |
Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model |
title_sort |
Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model |
author |
Silva, Roberto da |
author_facet |
Silva, Roberto da Alves Junior, Nelson Felício, José Roberto Drugovich de |
author_role |
author |
author2 |
Alves Junior, Nelson Felício, José Roberto Drugovich de |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Silva, Roberto da Alves Junior, Nelson Felício, José Roberto Drugovich de |
dc.subject.por.fl_str_mv |
Método de Monte Carlo Modelo de ising Magnetização Pontos criticos |
topic |
Método de Monte Carlo Modelo de ising Magnetização Pontos criticos |
description |
In this work, we study the critical behavior of second-order points, specifically the Lifshitz point (LP) of a three-dimensional Ising model with axial competing interactions [the axial-next-nearest-neighbor Ising (ANNNI) model], using time-dependent Monte Carlo simulations. We use a recently developed technique that helps us localize the critical temperature corresponding to the best power law for magnetization decay over time: (M)m0=1 ∼ t −β/νz, which is expected of simulations starting from initially ordered states. We obtain original results for the dynamic critical exponent z, evaluated from the behavior of the ratio F2(t ) = (M2) m0=0/ (M)2 m0=1 ∼ t 3/z, along the critical line up to the LP. We explore all the critical exponents of the LP in detail, including the dynamic critical exponent θ that characterizes the initial slip of magnetization and the global persistence exponent θg associated with the probability P(t) that magnetization keeps its signal up to time t. Our estimates for the dynamic critical exponents at the Lifshitz point are z = 2.34(2) and θg = 0.336(4), values that are very different from those of the three-dimensional Ising model (the ANNNI model without the next-nearest-neighbor interactions at the z axis, i.e., J2 = 0), i.e., z ≈ 2.07 and θg ≈ 0.38. We also present estimates for the static critical exponents β and ν, obtained from extended time-dependent scaling relations. Our results for static exponents are in good agreement with previous works. |
publishDate |
2013 |
dc.date.issued.fl_str_mv |
2013 |
dc.date.accessioned.fl_str_mv |
2014-08-26T09:26:23Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/101845 |
dc.identifier.issn.pt_BR.fl_str_mv |
1539-3755 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000897736 |
identifier_str_mv |
1539-3755 000897736 |
url |
http://hdl.handle.net/10183/101845 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 87, no. 1 (Jan. 2013), 012131, 10 p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/101845/2/000897736.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/101845/1/000897736.pdf http://www.lume.ufrgs.br/bitstream/10183/101845/3/000897736.pdf.jpg |
bitstream.checksum.fl_str_mv |
e3399d1beda3b2892c5115845e1bb185 701c140c82388894281deab538e1f77a 4a6a4227a8df9afae2e1a3fb4c221c1e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447556149215232 |