Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model

Detalhes bibliográficos
Autor(a) principal: Silva, Roberto da
Data de Publicação: 2013
Outros Autores: Alves Junior, Nelson, Felício, José Roberto Drugovich de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/101845
Resumo: In this work, we study the critical behavior of second-order points, specifically the Lifshitz point (LP) of a three-dimensional Ising model with axial competing interactions [the axial-next-nearest-neighbor Ising (ANNNI) model], using time-dependent Monte Carlo simulations. We use a recently developed technique that helps us localize the critical temperature corresponding to the best power law for magnetization decay over time: (M)m0=1 ∼ t −β/νz, which is expected of simulations starting from initially ordered states. We obtain original results for the dynamic critical exponent z, evaluated from the behavior of the ratio F2(t ) = (M2) m0=0/ (M)2 m0=1 ∼ t 3/z, along the critical line up to the LP. We explore all the critical exponents of the LP in detail, including the dynamic critical exponent θ that characterizes the initial slip of magnetization and the global persistence exponent θg associated with the probability P(t) that magnetization keeps its signal up to time t. Our estimates for the dynamic critical exponents at the Lifshitz point are z = 2.34(2) and θg = 0.336(4), values that are very different from those of the three-dimensional Ising model (the ANNNI model without the next-nearest-neighbor interactions at the z axis, i.e., J2 = 0), i.e., z ≈ 2.07 and θg ≈ 0.38. We also present estimates for the static critical exponents β and ν, obtained from extended time-dependent scaling relations. Our results for static exponents are in good agreement with previous works.
id UFRGS-2_a8f958ec521be14af4c1dbe4c7278928
oai_identifier_str oai:www.lume.ufrgs.br:10183/101845
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Silva, Roberto daAlves Junior, NelsonFelício, José Roberto Drugovich de2014-08-26T09:26:23Z20131539-3755http://hdl.handle.net/10183/101845000897736In this work, we study the critical behavior of second-order points, specifically the Lifshitz point (LP) of a three-dimensional Ising model with axial competing interactions [the axial-next-nearest-neighbor Ising (ANNNI) model], using time-dependent Monte Carlo simulations. We use a recently developed technique that helps us localize the critical temperature corresponding to the best power law for magnetization decay over time: (M)m0=1 ∼ t −β/νz, which is expected of simulations starting from initially ordered states. We obtain original results for the dynamic critical exponent z, evaluated from the behavior of the ratio F2(t ) = (M2) m0=0/ (M)2 m0=1 ∼ t 3/z, along the critical line up to the LP. We explore all the critical exponents of the LP in detail, including the dynamic critical exponent θ that characterizes the initial slip of magnetization and the global persistence exponent θg associated with the probability P(t) that magnetization keeps its signal up to time t. Our estimates for the dynamic critical exponents at the Lifshitz point are z = 2.34(2) and θg = 0.336(4), values that are very different from those of the three-dimensional Ising model (the ANNNI model without the next-nearest-neighbor interactions at the z axis, i.e., J2 = 0), i.e., z ≈ 2.07 and θg ≈ 0.38. We also present estimates for the static critical exponents β and ν, obtained from extended time-dependent scaling relations. Our results for static exponents are in good agreement with previous works.application/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Vol. 87, no. 1 (Jan. 2013), 012131, 10 p.Método de Monte CarloModelo de isingMagnetizaçãoPontos criticosTime-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising modelEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000897736.pdf.txt000897736.pdf.txtExtracted Texttext/plain47404http://www.lume.ufrgs.br/bitstream/10183/101845/2/000897736.pdf.txte3399d1beda3b2892c5115845e1bb185MD52ORIGINAL000897736.pdf000897736.pdfTexto completo (inglês)application/pdf1192331http://www.lume.ufrgs.br/bitstream/10183/101845/1/000897736.pdf701c140c82388894281deab538e1f77aMD51THUMBNAIL000897736.pdf.jpg000897736.pdf.jpgGenerated Thumbnailimage/jpeg2096http://www.lume.ufrgs.br/bitstream/10183/101845/3/000897736.pdf.jpg4a6a4227a8df9afae2e1a3fb4c221c1eMD5310183/1018452018-10-22 09:30:23.253oai:www.lume.ufrgs.br:10183/101845Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2018-10-22T12:30:23Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model
title Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model
spellingShingle Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model
Silva, Roberto da
Método de Monte Carlo
Modelo de ising
Magnetização
Pontos criticos
title_short Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model
title_full Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model
title_fullStr Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model
title_full_unstemmed Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model
title_sort Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model
author Silva, Roberto da
author_facet Silva, Roberto da
Alves Junior, Nelson
Felício, José Roberto Drugovich de
author_role author
author2 Alves Junior, Nelson
Felício, José Roberto Drugovich de
author2_role author
author
dc.contributor.author.fl_str_mv Silva, Roberto da
Alves Junior, Nelson
Felício, José Roberto Drugovich de
dc.subject.por.fl_str_mv Método de Monte Carlo
Modelo de ising
Magnetização
Pontos criticos
topic Método de Monte Carlo
Modelo de ising
Magnetização
Pontos criticos
description In this work, we study the critical behavior of second-order points, specifically the Lifshitz point (LP) of a three-dimensional Ising model with axial competing interactions [the axial-next-nearest-neighbor Ising (ANNNI) model], using time-dependent Monte Carlo simulations. We use a recently developed technique that helps us localize the critical temperature corresponding to the best power law for magnetization decay over time: (M)m0=1 ∼ t −β/νz, which is expected of simulations starting from initially ordered states. We obtain original results for the dynamic critical exponent z, evaluated from the behavior of the ratio F2(t ) = (M2) m0=0/ (M)2 m0=1 ∼ t 3/z, along the critical line up to the LP. We explore all the critical exponents of the LP in detail, including the dynamic critical exponent θ that characterizes the initial slip of magnetization and the global persistence exponent θg associated with the probability P(t) that magnetization keeps its signal up to time t. Our estimates for the dynamic critical exponents at the Lifshitz point are z = 2.34(2) and θg = 0.336(4), values that are very different from those of the three-dimensional Ising model (the ANNNI model without the next-nearest-neighbor interactions at the z axis, i.e., J2 = 0), i.e., z ≈ 2.07 and θg ≈ 0.38. We also present estimates for the static critical exponents β and ν, obtained from extended time-dependent scaling relations. Our results for static exponents are in good agreement with previous works.
publishDate 2013
dc.date.issued.fl_str_mv 2013
dc.date.accessioned.fl_str_mv 2014-08-26T09:26:23Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/101845
dc.identifier.issn.pt_BR.fl_str_mv 1539-3755
dc.identifier.nrb.pt_BR.fl_str_mv 000897736
identifier_str_mv 1539-3755
000897736
url http://hdl.handle.net/10183/101845
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 87, no. 1 (Jan. 2013), 012131, 10 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/101845/2/000897736.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/101845/1/000897736.pdf
http://www.lume.ufrgs.br/bitstream/10183/101845/3/000897736.pdf.jpg
bitstream.checksum.fl_str_mv e3399d1beda3b2892c5115845e1bb185
701c140c82388894281deab538e1f77a
4a6a4227a8df9afae2e1a3fb4c221c1e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447556149215232