Prediction of chronic critical illness in a general intensive care unit
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/94968 |
Resumo: | Objective: To assess the incidence, costs, and mortality associated with chronic critical illness (CCI), and to identify clinical predictors of CCI in a general intensive care unit. Methods: Thiswas a prospective observational cohort study. All patients receiving supportive treatment for over 20 dayswere considered chronically critically ill and eligible for the study. After applying the exclusion criteria, 453 patients were analyzed. Results: Therewas an 11% incidence of CCI. Total length of hospital stay, costs, and mortality were significantly higher among patients with CCI. Mechanical ventilation, sepsis, Glasgow score < 15, inadequate calorie intake, and higher body mass index were independent predictors for CCI in the multivariate logistic regression model. Conclusions: CCI affects a distinctive population in intensive care units with higher mortality, costs, and prolonged hospitalization. Factors identifiable at the time of admission or during the first week in the intensive care unit can be used to predict CCI. |
id |
UFRGS-2_a97362d983ec06cf3ff27703b3f714f1 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/94968 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Loss, Sergio HenriqueMarchese, Claudia BalhesteiroBoniatti, Márcio ManozzoWawrzeniak, Iuri ChristmannOliveira, Roselaine Pinheiro deNunes, Luciana NevesVictorino, Josue Almeida2014-05-07T02:04:34Z20130104-4230http://hdl.handle.net/10183/94968000892715Objective: To assess the incidence, costs, and mortality associated with chronic critical illness (CCI), and to identify clinical predictors of CCI in a general intensive care unit. Methods: Thiswas a prospective observational cohort study. All patients receiving supportive treatment for over 20 dayswere considered chronically critically ill and eligible for the study. After applying the exclusion criteria, 453 patients were analyzed. Results: Therewas an 11% incidence of CCI. Total length of hospital stay, costs, and mortality were significantly higher among patients with CCI. Mechanical ventilation, sepsis, Glasgow score < 15, inadequate calorie intake, and higher body mass index were independent predictors for CCI in the multivariate logistic regression model. Conclusions: CCI affects a distinctive population in intensive care units with higher mortality, costs, and prolonged hospitalization. Factors identifiable at the time of admission or during the first week in the intensive care unit can be used to predict CCI.Objetivo: Avaliar a incidência, custos e mortalidade relacionados a doenc¸a crítica crônica (DCC) e identificar seus preditores clínicos em uma unidade de terapia intensiva geral. Métodos: Trata-se de uma coorte observacional prospectiva. Todos pacientes que recebiam tratamento de suporte por mais de 20 dias eram considerados doentes críticos crônicos. Permaneceram 453 pacientes após a aplicac¸ão dos critérios de exclusão. Resultados: A incidência de DCC foi de 11%. Permanência hospitalar, custos e mortalidade foram significativamente maiores na populac¸ão com DCC. Ventilac¸ão mecânica, sepse,Glasgowescore < 15, inadequada ingestão calórica e elevado índice de massa corporal foram preditores independentes para DCC em um modelo multivariado de regressão logística. Conclusão: DCC abrange uma distinta populac¸ão nas unidades de terapia intensiva apresentando maiores mortalidade, custos e permanência hospitalar. Alguns fatores presentes na admissão ou durante a primeira semana na unidade de terapia intensiva podem ser usados como preditores de DCC.application/pdfengRevista da Associação Médica Brasileira (1992). São Paulo. Vol. 59, n. 3 (maio/jun. 2013), p. 241-247Estatística aplicadaEstatística médicaHospital mortalityCost controlProlonged mechanical ventilationCritical illnessPrediction of chronic critical illness in a general intensive care unitPredição de doença crítica crônica em uma unidade geral de cuidados intensivos info:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000892715.pdf000892715.pdfTexto completo (inglês)application/pdf741541http://www.lume.ufrgs.br/bitstream/10183/94968/1/000892715.pdfde8c17b9a4606dad589a74bc90b444a9MD51TEXT000892715.pdf.txt000892715.pdf.txtExtracted Texttext/plain34369http://www.lume.ufrgs.br/bitstream/10183/94968/2/000892715.pdf.txt4b4672da78ad02f2f00fb75cb2579374MD52THUMBNAIL000892715.pdf.jpg000892715.pdf.jpgGenerated Thumbnailimage/jpeg2084http://www.lume.ufrgs.br/bitstream/10183/94968/3/000892715.pdf.jpgdd2394d8efcbdc92171f0cd9830da3ccMD5310183/949682021-07-09 04:35:27.616315oai:www.lume.ufrgs.br:10183/94968Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-07-09T07:35:27Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Prediction of chronic critical illness in a general intensive care unit |
dc.title.alternative.pt.fl_str_mv |
Predição de doença crítica crônica em uma unidade geral de cuidados intensivos |
title |
Prediction of chronic critical illness in a general intensive care unit |
spellingShingle |
Prediction of chronic critical illness in a general intensive care unit Loss, Sergio Henrique Estatística aplicada Estatística médica Hospital mortality Cost control Prolonged mechanical ventilation Critical illness |
title_short |
Prediction of chronic critical illness in a general intensive care unit |
title_full |
Prediction of chronic critical illness in a general intensive care unit |
title_fullStr |
Prediction of chronic critical illness in a general intensive care unit |
title_full_unstemmed |
Prediction of chronic critical illness in a general intensive care unit |
title_sort |
Prediction of chronic critical illness in a general intensive care unit |
author |
Loss, Sergio Henrique |
author_facet |
Loss, Sergio Henrique Marchese, Claudia Balhesteiro Boniatti, Márcio Manozzo Wawrzeniak, Iuri Christmann Oliveira, Roselaine Pinheiro de Nunes, Luciana Neves Victorino, Josue Almeida |
author_role |
author |
author2 |
Marchese, Claudia Balhesteiro Boniatti, Márcio Manozzo Wawrzeniak, Iuri Christmann Oliveira, Roselaine Pinheiro de Nunes, Luciana Neves Victorino, Josue Almeida |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Loss, Sergio Henrique Marchese, Claudia Balhesteiro Boniatti, Márcio Manozzo Wawrzeniak, Iuri Christmann Oliveira, Roselaine Pinheiro de Nunes, Luciana Neves Victorino, Josue Almeida |
dc.subject.por.fl_str_mv |
Estatística aplicada Estatística médica |
topic |
Estatística aplicada Estatística médica Hospital mortality Cost control Prolonged mechanical ventilation Critical illness |
dc.subject.eng.fl_str_mv |
Hospital mortality Cost control Prolonged mechanical ventilation Critical illness |
description |
Objective: To assess the incidence, costs, and mortality associated with chronic critical illness (CCI), and to identify clinical predictors of CCI in a general intensive care unit. Methods: Thiswas a prospective observational cohort study. All patients receiving supportive treatment for over 20 dayswere considered chronically critically ill and eligible for the study. After applying the exclusion criteria, 453 patients were analyzed. Results: Therewas an 11% incidence of CCI. Total length of hospital stay, costs, and mortality were significantly higher among patients with CCI. Mechanical ventilation, sepsis, Glasgow score < 15, inadequate calorie intake, and higher body mass index were independent predictors for CCI in the multivariate logistic regression model. Conclusions: CCI affects a distinctive population in intensive care units with higher mortality, costs, and prolonged hospitalization. Factors identifiable at the time of admission or during the first week in the intensive care unit can be used to predict CCI. |
publishDate |
2013 |
dc.date.issued.fl_str_mv |
2013 |
dc.date.accessioned.fl_str_mv |
2014-05-07T02:04:34Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/94968 |
dc.identifier.issn.pt_BR.fl_str_mv |
0104-4230 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000892715 |
identifier_str_mv |
0104-4230 000892715 |
url |
http://hdl.handle.net/10183/94968 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Revista da Associação Médica Brasileira (1992). São Paulo. Vol. 59, n. 3 (maio/jun. 2013), p. 241-247 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/94968/1/000892715.pdf http://www.lume.ufrgs.br/bitstream/10183/94968/2/000892715.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/94968/3/000892715.pdf.jpg |
bitstream.checksum.fl_str_mv |
de8c17b9a4606dad589a74bc90b444a9 4b4672da78ad02f2f00fb75cb2579374 dd2394d8efcbdc92171f0cd9830da3cc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447541335982080 |