On the Aubry-Mather theory for symbolic dynamics

Detalhes bibliográficos
Autor(a) principal: Garibaldi, Eduardo
Data de Publicação: 2008
Outros Autores: Lopes, Artur Oscar
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/27440
Resumo: We propose a new model of ergodic optimization for expanding dynamical systems: the holonomic setting. In fact, we introduce an extension of the standard model used in this theory. The formulation we consider here is quite natural if one wants a meaning for possible variations of a real trajectory under the forward shift. In other contexts (for twist maps, for instance), this property appears in a crucial way. A version of the Aubry–Mather theory for symbolic dynamics is introduced. We are mainly interested here in problems related to the properties of maximizing probabilities for the two-sided shift. Under the transitive hypothesis, we show the existence of sub-actions for Holder potentials also in the holonomic setting. We analyze then connections between calibrated sub-actions and the Ma˜n´e potential. A representation formula for calibrated sub-actions is presented, which drives us naturally to a classification theorem for these sub-actions. We also investigate properties of the support of maximizing probabilities.
id UFRGS-2_ae583504123138fec67bf773b6994d1d
oai_identifier_str oai:www.lume.ufrgs.br:10183/27440
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Garibaldi, EduardoLopes, Artur Oscar2011-01-15T05:59:01Z20080143-3857http://hdl.handle.net/10183/27440000636667We propose a new model of ergodic optimization for expanding dynamical systems: the holonomic setting. In fact, we introduce an extension of the standard model used in this theory. The formulation we consider here is quite natural if one wants a meaning for possible variations of a real trajectory under the forward shift. In other contexts (for twist maps, for instance), this property appears in a crucial way. A version of the Aubry–Mather theory for symbolic dynamics is introduced. We are mainly interested here in problems related to the properties of maximizing probabilities for the two-sided shift. Under the transitive hypothesis, we show the existence of sub-actions for Holder potentials also in the holonomic setting. We analyze then connections between calibrated sub-actions and the Ma˜n´e potential. A representation formula for calibrated sub-actions is presented, which drives us naturally to a classification theorem for these sub-actions. We also investigate properties of the support of maximizing probabilities.application/pdfengErgodic theory and dynamical systems. Cambrige. Vol. 28, no. 4 (June 2008), p. 791-815.Otimização ergódicaSistemas dinamicos : Ergodicidade : TopologiaOn the Aubry-Mather theory for symbolic dynamicsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000636667.pdf000636667.pdfTexto completo (inglês)application/pdf239799http://www.lume.ufrgs.br/bitstream/10183/27440/1/000636667.pdf0a2f79832d8513174c0a0497df3f7d87MD51TEXT000636667.pdf.txt000636667.pdf.txtExtracted Texttext/plain59048http://www.lume.ufrgs.br/bitstream/10183/27440/2/000636667.pdf.txt58acd7c05bde8d2f84db39596224f1f1MD52THUMBNAIL000636667.pdf.jpg000636667.pdf.jpgGenerated Thumbnailimage/jpeg1697http://www.lume.ufrgs.br/bitstream/10183/27440/3/000636667.pdf.jpg598e6c48a44e249ff362c1b770dfc12bMD5310183/274402021-06-13 04:31:26.404057oai:www.lume.ufrgs.br:10183/27440Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-06-13T07:31:26Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv On the Aubry-Mather theory for symbolic dynamics
title On the Aubry-Mather theory for symbolic dynamics
spellingShingle On the Aubry-Mather theory for symbolic dynamics
Garibaldi, Eduardo
Otimização ergódica
Sistemas dinamicos : Ergodicidade : Topologia
title_short On the Aubry-Mather theory for symbolic dynamics
title_full On the Aubry-Mather theory for symbolic dynamics
title_fullStr On the Aubry-Mather theory for symbolic dynamics
title_full_unstemmed On the Aubry-Mather theory for symbolic dynamics
title_sort On the Aubry-Mather theory for symbolic dynamics
author Garibaldi, Eduardo
author_facet Garibaldi, Eduardo
Lopes, Artur Oscar
author_role author
author2 Lopes, Artur Oscar
author2_role author
dc.contributor.author.fl_str_mv Garibaldi, Eduardo
Lopes, Artur Oscar
dc.subject.por.fl_str_mv Otimização ergódica
Sistemas dinamicos : Ergodicidade : Topologia
topic Otimização ergódica
Sistemas dinamicos : Ergodicidade : Topologia
description We propose a new model of ergodic optimization for expanding dynamical systems: the holonomic setting. In fact, we introduce an extension of the standard model used in this theory. The formulation we consider here is quite natural if one wants a meaning for possible variations of a real trajectory under the forward shift. In other contexts (for twist maps, for instance), this property appears in a crucial way. A version of the Aubry–Mather theory for symbolic dynamics is introduced. We are mainly interested here in problems related to the properties of maximizing probabilities for the two-sided shift. Under the transitive hypothesis, we show the existence of sub-actions for Holder potentials also in the holonomic setting. We analyze then connections between calibrated sub-actions and the Ma˜n´e potential. A representation formula for calibrated sub-actions is presented, which drives us naturally to a classification theorem for these sub-actions. We also investigate properties of the support of maximizing probabilities.
publishDate 2008
dc.date.issued.fl_str_mv 2008
dc.date.accessioned.fl_str_mv 2011-01-15T05:59:01Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/27440
dc.identifier.issn.pt_BR.fl_str_mv 0143-3857
dc.identifier.nrb.pt_BR.fl_str_mv 000636667
identifier_str_mv 0143-3857
000636667
url http://hdl.handle.net/10183/27440
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Ergodic theory and dynamical systems. Cambrige. Vol. 28, no. 4 (June 2008), p. 791-815.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/27440/1/000636667.pdf
http://www.lume.ufrgs.br/bitstream/10183/27440/2/000636667.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/27440/3/000636667.pdf.jpg
bitstream.checksum.fl_str_mv 0a2f79832d8513174c0a0497df3f7d87
58acd7c05bde8d2f84db39596224f1f1
598e6c48a44e249ff362c1b770dfc12b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447421507862528