On the Aubry-Mather theory for symbolic dynamics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/27440 |
Resumo: | We propose a new model of ergodic optimization for expanding dynamical systems: the holonomic setting. In fact, we introduce an extension of the standard model used in this theory. The formulation we consider here is quite natural if one wants a meaning for possible variations of a real trajectory under the forward shift. In other contexts (for twist maps, for instance), this property appears in a crucial way. A version of the Aubry–Mather theory for symbolic dynamics is introduced. We are mainly interested here in problems related to the properties of maximizing probabilities for the two-sided shift. Under the transitive hypothesis, we show the existence of sub-actions for Holder potentials also in the holonomic setting. We analyze then connections between calibrated sub-actions and the Ma˜n´e potential. A representation formula for calibrated sub-actions is presented, which drives us naturally to a classification theorem for these sub-actions. We also investigate properties of the support of maximizing probabilities. |
id |
UFRGS-2_ae583504123138fec67bf773b6994d1d |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/27440 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Garibaldi, EduardoLopes, Artur Oscar2011-01-15T05:59:01Z20080143-3857http://hdl.handle.net/10183/27440000636667We propose a new model of ergodic optimization for expanding dynamical systems: the holonomic setting. In fact, we introduce an extension of the standard model used in this theory. The formulation we consider here is quite natural if one wants a meaning for possible variations of a real trajectory under the forward shift. In other contexts (for twist maps, for instance), this property appears in a crucial way. A version of the Aubry–Mather theory for symbolic dynamics is introduced. We are mainly interested here in problems related to the properties of maximizing probabilities for the two-sided shift. Under the transitive hypothesis, we show the existence of sub-actions for Holder potentials also in the holonomic setting. We analyze then connections between calibrated sub-actions and the Ma˜n´e potential. A representation formula for calibrated sub-actions is presented, which drives us naturally to a classification theorem for these sub-actions. We also investigate properties of the support of maximizing probabilities.application/pdfengErgodic theory and dynamical systems. Cambrige. Vol. 28, no. 4 (June 2008), p. 791-815.Otimização ergódicaSistemas dinamicos : Ergodicidade : TopologiaOn the Aubry-Mather theory for symbolic dynamicsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000636667.pdf000636667.pdfTexto completo (inglês)application/pdf239799http://www.lume.ufrgs.br/bitstream/10183/27440/1/000636667.pdf0a2f79832d8513174c0a0497df3f7d87MD51TEXT000636667.pdf.txt000636667.pdf.txtExtracted Texttext/plain59048http://www.lume.ufrgs.br/bitstream/10183/27440/2/000636667.pdf.txt58acd7c05bde8d2f84db39596224f1f1MD52THUMBNAIL000636667.pdf.jpg000636667.pdf.jpgGenerated Thumbnailimage/jpeg1697http://www.lume.ufrgs.br/bitstream/10183/27440/3/000636667.pdf.jpg598e6c48a44e249ff362c1b770dfc12bMD5310183/274402021-06-13 04:31:26.404057oai:www.lume.ufrgs.br:10183/27440Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-06-13T07:31:26Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
On the Aubry-Mather theory for symbolic dynamics |
title |
On the Aubry-Mather theory for symbolic dynamics |
spellingShingle |
On the Aubry-Mather theory for symbolic dynamics Garibaldi, Eduardo Otimização ergódica Sistemas dinamicos : Ergodicidade : Topologia |
title_short |
On the Aubry-Mather theory for symbolic dynamics |
title_full |
On the Aubry-Mather theory for symbolic dynamics |
title_fullStr |
On the Aubry-Mather theory for symbolic dynamics |
title_full_unstemmed |
On the Aubry-Mather theory for symbolic dynamics |
title_sort |
On the Aubry-Mather theory for symbolic dynamics |
author |
Garibaldi, Eduardo |
author_facet |
Garibaldi, Eduardo Lopes, Artur Oscar |
author_role |
author |
author2 |
Lopes, Artur Oscar |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Garibaldi, Eduardo Lopes, Artur Oscar |
dc.subject.por.fl_str_mv |
Otimização ergódica Sistemas dinamicos : Ergodicidade : Topologia |
topic |
Otimização ergódica Sistemas dinamicos : Ergodicidade : Topologia |
description |
We propose a new model of ergodic optimization for expanding dynamical systems: the holonomic setting. In fact, we introduce an extension of the standard model used in this theory. The formulation we consider here is quite natural if one wants a meaning for possible variations of a real trajectory under the forward shift. In other contexts (for twist maps, for instance), this property appears in a crucial way. A version of the Aubry–Mather theory for symbolic dynamics is introduced. We are mainly interested here in problems related to the properties of maximizing probabilities for the two-sided shift. Under the transitive hypothesis, we show the existence of sub-actions for Holder potentials also in the holonomic setting. We analyze then connections between calibrated sub-actions and the Ma˜n´e potential. A representation formula for calibrated sub-actions is presented, which drives us naturally to a classification theorem for these sub-actions. We also investigate properties of the support of maximizing probabilities. |
publishDate |
2008 |
dc.date.issued.fl_str_mv |
2008 |
dc.date.accessioned.fl_str_mv |
2011-01-15T05:59:01Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/27440 |
dc.identifier.issn.pt_BR.fl_str_mv |
0143-3857 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000636667 |
identifier_str_mv |
0143-3857 000636667 |
url |
http://hdl.handle.net/10183/27440 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Ergodic theory and dynamical systems. Cambrige. Vol. 28, no. 4 (June 2008), p. 791-815. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/27440/1/000636667.pdf http://www.lume.ufrgs.br/bitstream/10183/27440/2/000636667.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/27440/3/000636667.pdf.jpg |
bitstream.checksum.fl_str_mv |
0a2f79832d8513174c0a0497df3f7d87 58acd7c05bde8d2f84db39596224f1f1 598e6c48a44e249ff362c1b770dfc12b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447421507862528 |