Counting orientations of graphs with no strongly connected tournaments

Detalhes bibliográficos
Autor(a) principal: Botler, Fábio Happ
Data de Publicação: 2021
Outros Autores: Hoppen, Carlos, Mota, Guilherme Oliveira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/246962
Resumo: Let Sk(n) be the maximum number of orientations of an n-vertex graph G in which no copy of Kk is strongly connected. For all integers n, k ≥ 4 where n ≥ 5 or k ≥ 5, we prove that Sk(n) = 2tk - 1(n), where tk-1(n) is the number of edges of the n-vertex (k - 1)-partite Turán graph Tk-1(n). Moreover, we prove that Tk-1(n) is the only graph having 2tk-1(n) orientations with no strongly connected copies of Kk.
id UFRGS-2_b5c16798a74e9cbe002c07c3f033fb1b
oai_identifier_str oai:www.lume.ufrgs.br:10183/246962
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Botler, Fábio HappHoppen, CarlosMota, Guilherme Oliveira2022-08-16T04:47:07Z20211877-0509http://hdl.handle.net/10183/246962001136295Let Sk(n) be the maximum number of orientations of an n-vertex graph G in which no copy of Kk is strongly connected. For all integers n, k ≥ 4 where n ≥ 5 or k ≥ 5, we prove that Sk(n) = 2tk - 1(n), where tk-1(n) is the number of edges of the n-vertex (k - 1)-partite Turán graph Tk-1(n). Moreover, we prove that Tk-1(n) is the only graph having 2tk-1(n) orientations with no strongly connected copies of Kk.application/pdfengProcedia Computer Science. Amsterdam. Vol. 195 (2021), p. 385 - 393GrafosOrientaçãoOrientationsTournamentsComplete graphsCounting orientations of graphs with no strongly connected tournamentsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001136295.pdf.txt001136295.pdf.txtExtracted Texttext/plain34518http://www.lume.ufrgs.br/bitstream/10183/246962/2/001136295.pdf.txte186cb199ae1f7ccb550660e9fa395aeMD52ORIGINAL001136295.pdfTexto completo (inglês)application/pdf387809http://www.lume.ufrgs.br/bitstream/10183/246962/1/001136295.pdfad712be198a1f3ea7cb642b3bef460b9MD5110183/2469622022-08-17 04:48:52.823486oai:www.lume.ufrgs.br:10183/246962Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2022-08-17T07:48:52Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Counting orientations of graphs with no strongly connected tournaments
title Counting orientations of graphs with no strongly connected tournaments
spellingShingle Counting orientations of graphs with no strongly connected tournaments
Botler, Fábio Happ
Grafos
Orientação
Orientations
Tournaments
Complete graphs
title_short Counting orientations of graphs with no strongly connected tournaments
title_full Counting orientations of graphs with no strongly connected tournaments
title_fullStr Counting orientations of graphs with no strongly connected tournaments
title_full_unstemmed Counting orientations of graphs with no strongly connected tournaments
title_sort Counting orientations of graphs with no strongly connected tournaments
author Botler, Fábio Happ
author_facet Botler, Fábio Happ
Hoppen, Carlos
Mota, Guilherme Oliveira
author_role author
author2 Hoppen, Carlos
Mota, Guilherme Oliveira
author2_role author
author
dc.contributor.author.fl_str_mv Botler, Fábio Happ
Hoppen, Carlos
Mota, Guilherme Oliveira
dc.subject.por.fl_str_mv Grafos
Orientação
topic Grafos
Orientação
Orientations
Tournaments
Complete graphs
dc.subject.eng.fl_str_mv Orientations
Tournaments
Complete graphs
description Let Sk(n) be the maximum number of orientations of an n-vertex graph G in which no copy of Kk is strongly connected. For all integers n, k ≥ 4 where n ≥ 5 or k ≥ 5, we prove that Sk(n) = 2tk - 1(n), where tk-1(n) is the number of edges of the n-vertex (k - 1)-partite Turán graph Tk-1(n). Moreover, we prove that Tk-1(n) is the only graph having 2tk-1(n) orientations with no strongly connected copies of Kk.
publishDate 2021
dc.date.issued.fl_str_mv 2021
dc.date.accessioned.fl_str_mv 2022-08-16T04:47:07Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/246962
dc.identifier.issn.pt_BR.fl_str_mv 1877-0509
dc.identifier.nrb.pt_BR.fl_str_mv 001136295
identifier_str_mv 1877-0509
001136295
url http://hdl.handle.net/10183/246962
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Procedia Computer Science. Amsterdam. Vol. 195 (2021), p. 385 - 393
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/246962/2/001136295.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/246962/1/001136295.pdf
bitstream.checksum.fl_str_mv e186cb199ae1f7ccb550660e9fa395ae
ad712be198a1f3ea7cb642b3bef460b9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447801438404608