Counting orientations of graphs with no strongly connected tournaments
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/246962 |
Resumo: | Let Sk(n) be the maximum number of orientations of an n-vertex graph G in which no copy of Kk is strongly connected. For all integers n, k ≥ 4 where n ≥ 5 or k ≥ 5, we prove that Sk(n) = 2tk - 1(n), where tk-1(n) is the number of edges of the n-vertex (k - 1)-partite Turán graph Tk-1(n). Moreover, we prove that Tk-1(n) is the only graph having 2tk-1(n) orientations with no strongly connected copies of Kk. |
id |
UFRGS-2_b5c16798a74e9cbe002c07c3f033fb1b |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/246962 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Botler, Fábio HappHoppen, CarlosMota, Guilherme Oliveira2022-08-16T04:47:07Z20211877-0509http://hdl.handle.net/10183/246962001136295Let Sk(n) be the maximum number of orientations of an n-vertex graph G in which no copy of Kk is strongly connected. For all integers n, k ≥ 4 where n ≥ 5 or k ≥ 5, we prove that Sk(n) = 2tk - 1(n), where tk-1(n) is the number of edges of the n-vertex (k - 1)-partite Turán graph Tk-1(n). Moreover, we prove that Tk-1(n) is the only graph having 2tk-1(n) orientations with no strongly connected copies of Kk.application/pdfengProcedia Computer Science. Amsterdam. Vol. 195 (2021), p. 385 - 393GrafosOrientaçãoOrientationsTournamentsComplete graphsCounting orientations of graphs with no strongly connected tournamentsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001136295.pdf.txt001136295.pdf.txtExtracted Texttext/plain34518http://www.lume.ufrgs.br/bitstream/10183/246962/2/001136295.pdf.txte186cb199ae1f7ccb550660e9fa395aeMD52ORIGINAL001136295.pdfTexto completo (inglês)application/pdf387809http://www.lume.ufrgs.br/bitstream/10183/246962/1/001136295.pdfad712be198a1f3ea7cb642b3bef460b9MD5110183/2469622022-08-17 04:48:52.823486oai:www.lume.ufrgs.br:10183/246962Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2022-08-17T07:48:52Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Counting orientations of graphs with no strongly connected tournaments |
title |
Counting orientations of graphs with no strongly connected tournaments |
spellingShingle |
Counting orientations of graphs with no strongly connected tournaments Botler, Fábio Happ Grafos Orientação Orientations Tournaments Complete graphs |
title_short |
Counting orientations of graphs with no strongly connected tournaments |
title_full |
Counting orientations of graphs with no strongly connected tournaments |
title_fullStr |
Counting orientations of graphs with no strongly connected tournaments |
title_full_unstemmed |
Counting orientations of graphs with no strongly connected tournaments |
title_sort |
Counting orientations of graphs with no strongly connected tournaments |
author |
Botler, Fábio Happ |
author_facet |
Botler, Fábio Happ Hoppen, Carlos Mota, Guilherme Oliveira |
author_role |
author |
author2 |
Hoppen, Carlos Mota, Guilherme Oliveira |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Botler, Fábio Happ Hoppen, Carlos Mota, Guilherme Oliveira |
dc.subject.por.fl_str_mv |
Grafos Orientação |
topic |
Grafos Orientação Orientations Tournaments Complete graphs |
dc.subject.eng.fl_str_mv |
Orientations Tournaments Complete graphs |
description |
Let Sk(n) be the maximum number of orientations of an n-vertex graph G in which no copy of Kk is strongly connected. For all integers n, k ≥ 4 where n ≥ 5 or k ≥ 5, we prove that Sk(n) = 2tk - 1(n), where tk-1(n) is the number of edges of the n-vertex (k - 1)-partite Turán graph Tk-1(n). Moreover, we prove that Tk-1(n) is the only graph having 2tk-1(n) orientations with no strongly connected copies of Kk. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021 |
dc.date.accessioned.fl_str_mv |
2022-08-16T04:47:07Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/246962 |
dc.identifier.issn.pt_BR.fl_str_mv |
1877-0509 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001136295 |
identifier_str_mv |
1877-0509 001136295 |
url |
http://hdl.handle.net/10183/246962 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Procedia Computer Science. Amsterdam. Vol. 195 (2021), p. 385 - 393 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/246962/2/001136295.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/246962/1/001136295.pdf |
bitstream.checksum.fl_str_mv |
e186cb199ae1f7ccb550660e9fa395ae ad712be198a1f3ea7cb642b3bef460b9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447801438404608 |