Polyhedral regions of local stability for linear discrete-time systems with saturating controls
Autor(a) principal: | |
---|---|
Data de Publicação: | 1999 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/27562 |
Resumo: | The study and the determination of polyhedral regions of local stability for linear systems subject to control saturation is addressed. The analysis of the nonlinear behavior of the closed-loop saturated system is made by dividing the state space in regions of saturation. Inside each of these regions, the system evolution can be represented by a linear system with an additive disturbance. From this representation, a necessary and sufficient condition relative to the contractivity of a given convex compact polyhedral set is stated. Consequently, the polyhedral set can be associated with a Lyapunov function and the local asymptotic stability of the saturated closed-loop system inside the set is guaranteed. Furthermore, it is shown how, in some particular cases, the compactness condition can be relaxed in order to ensure the asymptotic stability in unbounded polyhedra. Finally, an application of the contractivity conditions is presented in order to determine local asymptotic stability regions for the closed-loop saturated system. |
id |
UFRGS-2_bbd31faa89a8ceeea3b7af13159274a8 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/27562 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Silva Junior, Joao Manoel Gomes daTarbouriech, Sophie2011-01-28T05:59:03Z19990018-9286http://hdl.handle.net/10183/27562000293701The study and the determination of polyhedral regions of local stability for linear systems subject to control saturation is addressed. The analysis of the nonlinear behavior of the closed-loop saturated system is made by dividing the state space in regions of saturation. Inside each of these regions, the system evolution can be represented by a linear system with an additive disturbance. From this representation, a necessary and sufficient condition relative to the contractivity of a given convex compact polyhedral set is stated. Consequently, the polyhedral set can be associated with a Lyapunov function and the local asymptotic stability of the saturated closed-loop system inside the set is guaranteed. Furthermore, it is shown how, in some particular cases, the compactness condition can be relaxed in order to ensure the asymptotic stability in unbounded polyhedra. Finally, an application of the contractivity conditions is presented in order to determine local asymptotic stability regions for the closed-loop saturated system.application/pdfengIEEE Transactions on Automatic Control. New York. Vol. 44, no. 11 (Nov. 1999), p. 2081-2085Controle automático : EstabilidadeSistemas lineares : EstabilidadeContractivityControl saturationLocal stabilityLolyhedralLypunov functionPolyhedral regions of local stability for linear discrete-time systems with saturating controlsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000293701.pdf000293701.pdfTexto completo (inglês)application/pdf176041http://www.lume.ufrgs.br/bitstream/10183/27562/1/000293701.pdf8c749df8370dc7fa05005201ab3e91deMD51TEXT000293701.pdf.txt000293701.pdf.txtExtracted Texttext/plain30146http://www.lume.ufrgs.br/bitstream/10183/27562/2/000293701.pdf.txt07fa557ddb81c88852d0d4e94dcd0977MD52THUMBNAIL000293701.pdf.jpg000293701.pdf.jpgGenerated Thumbnailimage/jpeg2045http://www.lume.ufrgs.br/bitstream/10183/27562/3/000293701.pdf.jpg1db06a0eb6d6b5d02cf069bcd0185ff2MD5310183/275622021-06-26 04:45:14.4972oai:www.lume.ufrgs.br:10183/27562Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-06-26T07:45:14Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Polyhedral regions of local stability for linear discrete-time systems with saturating controls |
title |
Polyhedral regions of local stability for linear discrete-time systems with saturating controls |
spellingShingle |
Polyhedral regions of local stability for linear discrete-time systems with saturating controls Silva Junior, Joao Manoel Gomes da Controle automático : Estabilidade Sistemas lineares : Estabilidade Contractivity Control saturation Local stability Lolyhedral Lypunov function |
title_short |
Polyhedral regions of local stability for linear discrete-time systems with saturating controls |
title_full |
Polyhedral regions of local stability for linear discrete-time systems with saturating controls |
title_fullStr |
Polyhedral regions of local stability for linear discrete-time systems with saturating controls |
title_full_unstemmed |
Polyhedral regions of local stability for linear discrete-time systems with saturating controls |
title_sort |
Polyhedral regions of local stability for linear discrete-time systems with saturating controls |
author |
Silva Junior, Joao Manoel Gomes da |
author_facet |
Silva Junior, Joao Manoel Gomes da Tarbouriech, Sophie |
author_role |
author |
author2 |
Tarbouriech, Sophie |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Silva Junior, Joao Manoel Gomes da Tarbouriech, Sophie |
dc.subject.por.fl_str_mv |
Controle automático : Estabilidade Sistemas lineares : Estabilidade |
topic |
Controle automático : Estabilidade Sistemas lineares : Estabilidade Contractivity Control saturation Local stability Lolyhedral Lypunov function |
dc.subject.eng.fl_str_mv |
Contractivity Control saturation Local stability Lolyhedral Lypunov function |
description |
The study and the determination of polyhedral regions of local stability for linear systems subject to control saturation is addressed. The analysis of the nonlinear behavior of the closed-loop saturated system is made by dividing the state space in regions of saturation. Inside each of these regions, the system evolution can be represented by a linear system with an additive disturbance. From this representation, a necessary and sufficient condition relative to the contractivity of a given convex compact polyhedral set is stated. Consequently, the polyhedral set can be associated with a Lyapunov function and the local asymptotic stability of the saturated closed-loop system inside the set is guaranteed. Furthermore, it is shown how, in some particular cases, the compactness condition can be relaxed in order to ensure the asymptotic stability in unbounded polyhedra. Finally, an application of the contractivity conditions is presented in order to determine local asymptotic stability regions for the closed-loop saturated system. |
publishDate |
1999 |
dc.date.issued.fl_str_mv |
1999 |
dc.date.accessioned.fl_str_mv |
2011-01-28T05:59:03Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/27562 |
dc.identifier.issn.pt_BR.fl_str_mv |
0018-9286 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000293701 |
identifier_str_mv |
0018-9286 000293701 |
url |
http://hdl.handle.net/10183/27562 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
IEEE Transactions on Automatic Control. New York. Vol. 44, no. 11 (Nov. 1999), p. 2081-2085 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/27562/1/000293701.pdf http://www.lume.ufrgs.br/bitstream/10183/27562/2/000293701.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/27562/3/000293701.pdf.jpg |
bitstream.checksum.fl_str_mv |
8c749df8370dc7fa05005201ab3e91de 07fa557ddb81c88852d0d4e94dcd0977 1db06a0eb6d6b5d02cf069bcd0185ff2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447422035296256 |