Polyhedral regions of local stability for linear discrete-time systems with saturating controls

Detalhes bibliográficos
Autor(a) principal: Silva Junior, Joao Manoel Gomes da
Data de Publicação: 1999
Outros Autores: Tarbouriech, Sophie
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/27562
Resumo: The study and the determination of polyhedral regions of local stability for linear systems subject to control saturation is addressed. The analysis of the nonlinear behavior of the closed-loop saturated system is made by dividing the state space in regions of saturation. Inside each of these regions, the system evolution can be represented by a linear system with an additive disturbance. From this representation, a necessary and sufficient condition relative to the contractivity of a given convex compact polyhedral set is stated. Consequently, the polyhedral set can be associated with a Lyapunov function and the local asymptotic stability of the saturated closed-loop system inside the set is guaranteed. Furthermore, it is shown how, in some particular cases, the compactness condition can be relaxed in order to ensure the asymptotic stability in unbounded polyhedra. Finally, an application of the contractivity conditions is presented in order to determine local asymptotic stability regions for the closed-loop saturated system.
id UFRGS-2_bbd31faa89a8ceeea3b7af13159274a8
oai_identifier_str oai:www.lume.ufrgs.br:10183/27562
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Silva Junior, Joao Manoel Gomes daTarbouriech, Sophie2011-01-28T05:59:03Z19990018-9286http://hdl.handle.net/10183/27562000293701The study and the determination of polyhedral regions of local stability for linear systems subject to control saturation is addressed. The analysis of the nonlinear behavior of the closed-loop saturated system is made by dividing the state space in regions of saturation. Inside each of these regions, the system evolution can be represented by a linear system with an additive disturbance. From this representation, a necessary and sufficient condition relative to the contractivity of a given convex compact polyhedral set is stated. Consequently, the polyhedral set can be associated with a Lyapunov function and the local asymptotic stability of the saturated closed-loop system inside the set is guaranteed. Furthermore, it is shown how, in some particular cases, the compactness condition can be relaxed in order to ensure the asymptotic stability in unbounded polyhedra. Finally, an application of the contractivity conditions is presented in order to determine local asymptotic stability regions for the closed-loop saturated system.application/pdfengIEEE Transactions on Automatic Control. New York. Vol. 44, no. 11 (Nov. 1999), p. 2081-2085Controle automático : EstabilidadeSistemas lineares : EstabilidadeContractivityControl saturationLocal stabilityLolyhedralLypunov functionPolyhedral regions of local stability for linear discrete-time systems with saturating controlsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000293701.pdf000293701.pdfTexto completo (inglês)application/pdf176041http://www.lume.ufrgs.br/bitstream/10183/27562/1/000293701.pdf8c749df8370dc7fa05005201ab3e91deMD51TEXT000293701.pdf.txt000293701.pdf.txtExtracted Texttext/plain30146http://www.lume.ufrgs.br/bitstream/10183/27562/2/000293701.pdf.txt07fa557ddb81c88852d0d4e94dcd0977MD52THUMBNAIL000293701.pdf.jpg000293701.pdf.jpgGenerated Thumbnailimage/jpeg2045http://www.lume.ufrgs.br/bitstream/10183/27562/3/000293701.pdf.jpg1db06a0eb6d6b5d02cf069bcd0185ff2MD5310183/275622021-06-26 04:45:14.4972oai:www.lume.ufrgs.br:10183/27562Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-06-26T07:45:14Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Polyhedral regions of local stability for linear discrete-time systems with saturating controls
title Polyhedral regions of local stability for linear discrete-time systems with saturating controls
spellingShingle Polyhedral regions of local stability for linear discrete-time systems with saturating controls
Silva Junior, Joao Manoel Gomes da
Controle automático : Estabilidade
Sistemas lineares : Estabilidade
Contractivity
Control saturation
Local stability
Lolyhedral
Lypunov function
title_short Polyhedral regions of local stability for linear discrete-time systems with saturating controls
title_full Polyhedral regions of local stability for linear discrete-time systems with saturating controls
title_fullStr Polyhedral regions of local stability for linear discrete-time systems with saturating controls
title_full_unstemmed Polyhedral regions of local stability for linear discrete-time systems with saturating controls
title_sort Polyhedral regions of local stability for linear discrete-time systems with saturating controls
author Silva Junior, Joao Manoel Gomes da
author_facet Silva Junior, Joao Manoel Gomes da
Tarbouriech, Sophie
author_role author
author2 Tarbouriech, Sophie
author2_role author
dc.contributor.author.fl_str_mv Silva Junior, Joao Manoel Gomes da
Tarbouriech, Sophie
dc.subject.por.fl_str_mv Controle automático : Estabilidade
Sistemas lineares : Estabilidade
topic Controle automático : Estabilidade
Sistemas lineares : Estabilidade
Contractivity
Control saturation
Local stability
Lolyhedral
Lypunov function
dc.subject.eng.fl_str_mv Contractivity
Control saturation
Local stability
Lolyhedral
Lypunov function
description The study and the determination of polyhedral regions of local stability for linear systems subject to control saturation is addressed. The analysis of the nonlinear behavior of the closed-loop saturated system is made by dividing the state space in regions of saturation. Inside each of these regions, the system evolution can be represented by a linear system with an additive disturbance. From this representation, a necessary and sufficient condition relative to the contractivity of a given convex compact polyhedral set is stated. Consequently, the polyhedral set can be associated with a Lyapunov function and the local asymptotic stability of the saturated closed-loop system inside the set is guaranteed. Furthermore, it is shown how, in some particular cases, the compactness condition can be relaxed in order to ensure the asymptotic stability in unbounded polyhedra. Finally, an application of the contractivity conditions is presented in order to determine local asymptotic stability regions for the closed-loop saturated system.
publishDate 1999
dc.date.issued.fl_str_mv 1999
dc.date.accessioned.fl_str_mv 2011-01-28T05:59:03Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/27562
dc.identifier.issn.pt_BR.fl_str_mv 0018-9286
dc.identifier.nrb.pt_BR.fl_str_mv 000293701
identifier_str_mv 0018-9286
000293701
url http://hdl.handle.net/10183/27562
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv IEEE Transactions on Automatic Control. New York. Vol. 44, no. 11 (Nov. 1999), p. 2081-2085
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/27562/1/000293701.pdf
http://www.lume.ufrgs.br/bitstream/10183/27562/2/000293701.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/27562/3/000293701.pdf.jpg
bitstream.checksum.fl_str_mv 8c749df8370dc7fa05005201ab3e91de
07fa557ddb81c88852d0d4e94dcd0977
1db06a0eb6d6b5d02cf069bcd0185ff2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447422035296256