Projeto de referência de tensão subbandgap

Detalhes bibliográficos
Autor(a) principal: Duarte, João Vítor Cabrera
Data de Publicação: 2022
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/245885
Resumo: A referência de tensão é um circuito muito relevante por fornecer sua tensão de saída para diversos circuitos analógicos, sinais mistos e digitais, além de ter sido um importante tópico de estudo em circuitos integrados por mais de 50 anos. Uma referência de tensão deve providenciar uma tensão estável com baixa sensibilidade à variações na temperatura, tensão de alimentação, características de processo de fabricação e estresses no encapsulamento, além de outros parâmetros específicos de cada aplicação. Esse tipo de circuito funciona com o cancelamento da dependência térmica entre duas grandezas elétricas, normalmente implementados pela soma ponderada de dois efeitos físicos independentes com dependências térmicas opostas. Circuitos denominados bandgap empregam a deriva térmica negativa de uma junção semicondutora para gerar a grandeza elétrica com dependência complementar à temperatura absoluta, enquanto o potencial térmico, advindo da constante de Boltzmann e da carga do elétron, normalmente é utilizado para gerar a grandeza elétrica com dependência proporcional à temperatura absoluta. Considerando que essas grandezas também dependem do processo de fabricação, o desempenho de referência é muito impactado pela variabilidade de fabricação. Um projeto que apresente robustez à variabilidade é mandatório para aumentar a precisão do circuito. Consequentemente, este trabalho apresenta o projeto de uma referência de tensão subbandgap de baixa variabilidade comportamental. Foi implementada uma fonte de corrente ISQ para a polarização de todos os blocos do circuito com uma corrente que apresenta baixa variabilidade comportamental. Foram implementados Self-Cascode MOSFET (SCM) e Pares Diferenciais Desbalanceados para a geração de tensões proporcionais à temperatura absoluta. As topologias empregadas são descritas analiticamente e o modelo ACM foi utilizado durante o projeto. O circuito é formando somente por transistores no processo de fabricação de 180 nm CMOS da XFAB. As simulações realizadas em schematic view resultaram em uma tensão de referência de 738 mV apresentando TC médio de 37,6 ppm/ C, consumindo 8,809 μV em uma tensão de alimentação de 1,8 V. Simulações Monte Carlo foram conduzidas para avaliar o comportamento do circuito frente à variabilidade comportamental, apresentando resultados comparáveis à artigos publicados em convenções internacionais.
id UFRGS-2_bf26aa9ff7b156435c94a98ace78db84
oai_identifier_str oai:www.lume.ufrgs.br:10183/245885
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Duarte, João Vítor CabreraKlimach, Hamilton Duarte2022-08-03T04:26:40Z2022http://hdl.handle.net/10183/245885001145154A referência de tensão é um circuito muito relevante por fornecer sua tensão de saída para diversos circuitos analógicos, sinais mistos e digitais, além de ter sido um importante tópico de estudo em circuitos integrados por mais de 50 anos. Uma referência de tensão deve providenciar uma tensão estável com baixa sensibilidade à variações na temperatura, tensão de alimentação, características de processo de fabricação e estresses no encapsulamento, além de outros parâmetros específicos de cada aplicação. Esse tipo de circuito funciona com o cancelamento da dependência térmica entre duas grandezas elétricas, normalmente implementados pela soma ponderada de dois efeitos físicos independentes com dependências térmicas opostas. Circuitos denominados bandgap empregam a deriva térmica negativa de uma junção semicondutora para gerar a grandeza elétrica com dependência complementar à temperatura absoluta, enquanto o potencial térmico, advindo da constante de Boltzmann e da carga do elétron, normalmente é utilizado para gerar a grandeza elétrica com dependência proporcional à temperatura absoluta. Considerando que essas grandezas também dependem do processo de fabricação, o desempenho de referência é muito impactado pela variabilidade de fabricação. Um projeto que apresente robustez à variabilidade é mandatório para aumentar a precisão do circuito. Consequentemente, este trabalho apresenta o projeto de uma referência de tensão subbandgap de baixa variabilidade comportamental. Foi implementada uma fonte de corrente ISQ para a polarização de todos os blocos do circuito com uma corrente que apresenta baixa variabilidade comportamental. Foram implementados Self-Cascode MOSFET (SCM) e Pares Diferenciais Desbalanceados para a geração de tensões proporcionais à temperatura absoluta. As topologias empregadas são descritas analiticamente e o modelo ACM foi utilizado durante o projeto. O circuito é formando somente por transistores no processo de fabricação de 180 nm CMOS da XFAB. As simulações realizadas em schematic view resultaram em uma tensão de referência de 738 mV apresentando TC médio de 37,6 ppm/ C, consumindo 8,809 μV em uma tensão de alimentação de 1,8 V. Simulações Monte Carlo foram conduzidas para avaliar o comportamento do circuito frente à variabilidade comportamental, apresentando resultados comparáveis à artigos publicados em convenções internacionais.The voltage reference is a very relevant circuit for providing its output voltage to many analog, mixed-signal and digital circuits, and has been an important topic of study in integrated circuits for more than 50 years. A voltage reference must provide a stable voltage with low sensitivity to variations in temperature, supply voltage, manufacturing process characteristics and package stresses, as well as other application-specific parameters. This type of circuit works by canceling the thermal dependence between two electrical quantities, usually implemented by the weighted sum of two independent physical effects with opposite thermal dependencies. Circuits called bandgap employ the negative thermal drift of a semiconductor junction to generate the electric quantity with complementary temperature dependence, while the thermal potential, related from the Boltzmann’s constant and the electron charge, is normally used to generate the proportional term. Since these quantities are also dependent on the fabrication process, the reference performance is greatly impacted by fabrication variability. Reduction or a design that exhibits robustness to variability is mandatory to increase the circuit accuracy. Hence, this paper presents the design of a subbandgap voltage reference with low behavioral variability. An ISQ current source was implemented for biasing all the circuit blocks with a current that exhibits low behavioral variability. Self-Cascode MOSFET (SCM) and Unbalanced Differential Pairs were implemented for the generation proportional to absolute temperature terms. The topologies employed are described analytically and the ACM model was used during the design. The circuit is formed only by transistors in XFAB’s 180 nM CMOS manufacturing process. Simulations performed in schematic view resulted in a reference voltage of 738 mV showing average TC of 37,6 ppm/ C, consuming 8,809 μV at a supply voltage of 1,8 V. Monte Carlo simulations were conducted to evaluate the circuit behavior against behavioral variability, presenting results comparable to papers published in international conventions.application/pdfporCircuitos eletrônicosReferência de tensãoBandgapVoltage referenceVariabilityAnalog circuitsCMOS integrated circuitsProjeto de referência de tensão subbandgapinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisUniversidade Federal do Rio Grande do SulEscola de EngenhariaPorto Alegre, BR-RS2022Engenharia Elétricagraduaçãoinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001145154.pdf.txt001145154.pdf.txtExtracted Texttext/plain116564http://www.lume.ufrgs.br/bitstream/10183/245885/2/001145154.pdf.txt990b548fb17ba04a3b7dde2ee0c79cc6MD52ORIGINAL001145154.pdfTexto completoapplication/pdf3590878http://www.lume.ufrgs.br/bitstream/10183/245885/1/001145154.pdfbecbb1af09e1e6b0f5bc13b635e2c1a7MD5110183/2458852022-08-03 04:36:54.7oai:www.lume.ufrgs.br:10183/245885Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2022-08-03T07:36:54Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Projeto de referência de tensão subbandgap
title Projeto de referência de tensão subbandgap
spellingShingle Projeto de referência de tensão subbandgap
Duarte, João Vítor Cabrera
Circuitos eletrônicos
Referência de tensão
Bandgap
Voltage reference
Variability
Analog circuits
CMOS integrated circuits
title_short Projeto de referência de tensão subbandgap
title_full Projeto de referência de tensão subbandgap
title_fullStr Projeto de referência de tensão subbandgap
title_full_unstemmed Projeto de referência de tensão subbandgap
title_sort Projeto de referência de tensão subbandgap
author Duarte, João Vítor Cabrera
author_facet Duarte, João Vítor Cabrera
author_role author
dc.contributor.author.fl_str_mv Duarte, João Vítor Cabrera
dc.contributor.advisor1.fl_str_mv Klimach, Hamilton Duarte
contributor_str_mv Klimach, Hamilton Duarte
dc.subject.por.fl_str_mv Circuitos eletrônicos
Referência de tensão
topic Circuitos eletrônicos
Referência de tensão
Bandgap
Voltage reference
Variability
Analog circuits
CMOS integrated circuits
dc.subject.eng.fl_str_mv Bandgap
Voltage reference
Variability
Analog circuits
CMOS integrated circuits
description A referência de tensão é um circuito muito relevante por fornecer sua tensão de saída para diversos circuitos analógicos, sinais mistos e digitais, além de ter sido um importante tópico de estudo em circuitos integrados por mais de 50 anos. Uma referência de tensão deve providenciar uma tensão estável com baixa sensibilidade à variações na temperatura, tensão de alimentação, características de processo de fabricação e estresses no encapsulamento, além de outros parâmetros específicos de cada aplicação. Esse tipo de circuito funciona com o cancelamento da dependência térmica entre duas grandezas elétricas, normalmente implementados pela soma ponderada de dois efeitos físicos independentes com dependências térmicas opostas. Circuitos denominados bandgap empregam a deriva térmica negativa de uma junção semicondutora para gerar a grandeza elétrica com dependência complementar à temperatura absoluta, enquanto o potencial térmico, advindo da constante de Boltzmann e da carga do elétron, normalmente é utilizado para gerar a grandeza elétrica com dependência proporcional à temperatura absoluta. Considerando que essas grandezas também dependem do processo de fabricação, o desempenho de referência é muito impactado pela variabilidade de fabricação. Um projeto que apresente robustez à variabilidade é mandatório para aumentar a precisão do circuito. Consequentemente, este trabalho apresenta o projeto de uma referência de tensão subbandgap de baixa variabilidade comportamental. Foi implementada uma fonte de corrente ISQ para a polarização de todos os blocos do circuito com uma corrente que apresenta baixa variabilidade comportamental. Foram implementados Self-Cascode MOSFET (SCM) e Pares Diferenciais Desbalanceados para a geração de tensões proporcionais à temperatura absoluta. As topologias empregadas são descritas analiticamente e o modelo ACM foi utilizado durante o projeto. O circuito é formando somente por transistores no processo de fabricação de 180 nm CMOS da XFAB. As simulações realizadas em schematic view resultaram em uma tensão de referência de 738 mV apresentando TC médio de 37,6 ppm/ C, consumindo 8,809 μV em uma tensão de alimentação de 1,8 V. Simulações Monte Carlo foram conduzidas para avaliar o comportamento do circuito frente à variabilidade comportamental, apresentando resultados comparáveis à artigos publicados em convenções internacionais.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-08-03T04:26:40Z
dc.date.issued.fl_str_mv 2022
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/245885
dc.identifier.nrb.pt_BR.fl_str_mv 001145154
url http://hdl.handle.net/10183/245885
identifier_str_mv 001145154
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/245885/2/001145154.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/245885/1/001145154.pdf
bitstream.checksum.fl_str_mv 990b548fb17ba04a3b7dde2ee0c79cc6
becbb1af09e1e6b0f5bc13b635e2c1a7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1801224638969151488