2D nanoporous membrane for cation removal from water : effects of ionic valence, membrane hydrophobicity, and pore size

Detalhes bibliográficos
Autor(a) principal: Köhler, Mateus Henrique
Data de Publicação: 2018
Outros Autores: Bordin, José Rafael, Barbosa, Marcia Cristina Bernardes
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/198449
Resumo: Using molecular dynamic simulations, we show that single-layers of molybdenum disulfide (MoS2) and graphene can effectively reject ions and allow high water permeability. Solutions of water and three cations with different valencies (Na+ , Zn2+, and Fe3+) were investigated in the presence of the two types of membranes, and the results indicate a high dependence of the ion rejection on the cation charge. The associative characteristic of ferric chloride leads to a high rate of ion rejection by both nanopores, while the monovalent sodium chloride induces lower rejection rates. Particularly, MoS2 shows 100% of Fe3+ rejection for all pore sizes and applied pressures. On the other hand, the water permeation does not vary with the cation valence, having dependence only with the nanopore geometric and chemical characteristics. This study helps us to understand the fluid transport through a nanoporous membrane, essential for the development of new technologies for the removal of pollutants from water.
id UFRGS-2_c4cad9a9e1f5472ec8b3c23f88532287
oai_identifier_str oai:www.lume.ufrgs.br:10183/198449
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Köhler, Mateus HenriqueBordin, José RafaelBarbosa, Marcia Cristina Bernardes2019-08-28T02:34:19Z20180021-9606http://hdl.handle.net/10183/198449001098569Using molecular dynamic simulations, we show that single-layers of molybdenum disulfide (MoS2) and graphene can effectively reject ions and allow high water permeability. Solutions of water and three cations with different valencies (Na+ , Zn2+, and Fe3+) were investigated in the presence of the two types of membranes, and the results indicate a high dependence of the ion rejection on the cation charge. The associative characteristic of ferric chloride leads to a high rate of ion rejection by both nanopores, while the monovalent sodium chloride induces lower rejection rates. Particularly, MoS2 shows 100% of Fe3+ rejection for all pore sizes and applied pressures. On the other hand, the water permeation does not vary with the cation valence, having dependence only with the nanopore geometric and chemical characteristics. This study helps us to understand the fluid transport through a nanoporous membrane, essential for the development of new technologies for the removal of pollutants from water.application/pdfengThe journal of chemical physics. New York. Vol. 148, no. 22 (June 2018), 222804, 7 p.Dinâmica molecularÁguaSimulação computacionalHidrofobicidade2D nanoporous membrane for cation removal from water : effects of ionic valence, membrane hydrophobicity, and pore sizeEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001098569.pdf.txt001098569.pdf.txtExtracted Texttext/plain31338http://www.lume.ufrgs.br/bitstream/10183/198449/2/001098569.pdf.txt71eb1e7d1ebb7feda04f09ff2d9dca8cMD52ORIGINAL001098569.pdfTexto completo (inglês)application/pdf4071395http://www.lume.ufrgs.br/bitstream/10183/198449/1/001098569.pdf86fb998ba6e97fcee902aa87f68584edMD5110183/1984492024-02-07 06:01:34.401623oai:www.lume.ufrgs.br:10183/198449Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-02-07T08:01:34Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv 2D nanoporous membrane for cation removal from water : effects of ionic valence, membrane hydrophobicity, and pore size
title 2D nanoporous membrane for cation removal from water : effects of ionic valence, membrane hydrophobicity, and pore size
spellingShingle 2D nanoporous membrane for cation removal from water : effects of ionic valence, membrane hydrophobicity, and pore size
Köhler, Mateus Henrique
Dinâmica molecular
Água
Simulação computacional
Hidrofobicidade
title_short 2D nanoporous membrane for cation removal from water : effects of ionic valence, membrane hydrophobicity, and pore size
title_full 2D nanoporous membrane for cation removal from water : effects of ionic valence, membrane hydrophobicity, and pore size
title_fullStr 2D nanoporous membrane for cation removal from water : effects of ionic valence, membrane hydrophobicity, and pore size
title_full_unstemmed 2D nanoporous membrane for cation removal from water : effects of ionic valence, membrane hydrophobicity, and pore size
title_sort 2D nanoporous membrane for cation removal from water : effects of ionic valence, membrane hydrophobicity, and pore size
author Köhler, Mateus Henrique
author_facet Köhler, Mateus Henrique
Bordin, José Rafael
Barbosa, Marcia Cristina Bernardes
author_role author
author2 Bordin, José Rafael
Barbosa, Marcia Cristina Bernardes
author2_role author
author
dc.contributor.author.fl_str_mv Köhler, Mateus Henrique
Bordin, José Rafael
Barbosa, Marcia Cristina Bernardes
dc.subject.por.fl_str_mv Dinâmica molecular
Água
Simulação computacional
Hidrofobicidade
topic Dinâmica molecular
Água
Simulação computacional
Hidrofobicidade
description Using molecular dynamic simulations, we show that single-layers of molybdenum disulfide (MoS2) and graphene can effectively reject ions and allow high water permeability. Solutions of water and three cations with different valencies (Na+ , Zn2+, and Fe3+) were investigated in the presence of the two types of membranes, and the results indicate a high dependence of the ion rejection on the cation charge. The associative characteristic of ferric chloride leads to a high rate of ion rejection by both nanopores, while the monovalent sodium chloride induces lower rejection rates. Particularly, MoS2 shows 100% of Fe3+ rejection for all pore sizes and applied pressures. On the other hand, the water permeation does not vary with the cation valence, having dependence only with the nanopore geometric and chemical characteristics. This study helps us to understand the fluid transport through a nanoporous membrane, essential for the development of new technologies for the removal of pollutants from water.
publishDate 2018
dc.date.issued.fl_str_mv 2018
dc.date.accessioned.fl_str_mv 2019-08-28T02:34:19Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/198449
dc.identifier.issn.pt_BR.fl_str_mv 0021-9606
dc.identifier.nrb.pt_BR.fl_str_mv 001098569
identifier_str_mv 0021-9606
001098569
url http://hdl.handle.net/10183/198449
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv The journal of chemical physics. New York. Vol. 148, no. 22 (June 2018), 222804, 7 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/198449/2/001098569.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/198449/1/001098569.pdf
bitstream.checksum.fl_str_mv 71eb1e7d1ebb7feda04f09ff2d9dca8c
86fb998ba6e97fcee902aa87f68584ed
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1801224973169197056