PyNetMet : python tools for efficient work with networks and metabolic models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/103727 |
Resumo: | The complexity of genome-scale metabolic models and networks associated to biological systems makes the use of computational tools an essential element in the field of systems biology. Here we present PyNetMet, a Python library of tools to work with networks and metabolic models. These are open-source free tools for use in a Python platform, which adds considerably versatility to them when compared to their desktop similar. On the other hand, these tools allow one to work with different standards of metabolic models (OptGene and SBML) and the fact that they are programmed in Python opens the possibility of efficient integration with any other existing Python package. In order to illustrate the most important features and some uses of our software, we show results obtained in the analysis of metabolic models taken from the literature. For this purpose, three different models (one in OptGene and two in SBML format) were downloaded and throughly analyzed with our software. Also, we performed a comparison of the underlying metabolic networks of these models with randomly generated networks, pointing out the main differences between them. The PyNetMet package is available from the python package index (https://pypi.python.org/pypi/PyNetMet) for different platforms and documentation and more extensive illustrative examples can be found in the webpage pythonhosted.org/PyNetMet/. |
id |
UFRGS-2_e131fd1834b8e60ff2493dbfc1f7bc7f |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/103727 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Gamermann, DanielMontagud Aquino, ArnauInfante, Ramon JaimeTriana, JulianUrchueguía Schölzel, Javier FermínFernández de Córdoba Castellá, Pedro José2014-09-24T02:12:55Z20142219-1402http://hdl.handle.net/10183/103727000922075The complexity of genome-scale metabolic models and networks associated to biological systems makes the use of computational tools an essential element in the field of systems biology. Here we present PyNetMet, a Python library of tools to work with networks and metabolic models. These are open-source free tools for use in a Python platform, which adds considerably versatility to them when compared to their desktop similar. On the other hand, these tools allow one to work with different standards of metabolic models (OptGene and SBML) and the fact that they are programmed in Python opens the possibility of efficient integration with any other existing Python package. In order to illustrate the most important features and some uses of our software, we show results obtained in the analysis of metabolic models taken from the literature. For this purpose, three different models (one in OptGene and two in SBML format) were downloaded and throughly analyzed with our software. Also, we performed a comparison of the underlying metabolic networks of these models with randomly generated networks, pointing out the main differences between them. The PyNetMet package is available from the python package index (https://pypi.python.org/pypi/PyNetMet) for different platforms and documentation and more extensive illustrative examples can be found in the webpage pythonhosted.org/PyNetMet/.application/pdfengComputational and mathematical biology. Kowloon, Hong Kong. Vol. 3, no. 5 (2014), 11 p.Biologia computacionalPyNetMet : python tools for efficient work with networks and metabolic modelsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000922075.pdf000922075.pdfTexto completo (inglês)application/pdf835872http://www.lume.ufrgs.br/bitstream/10183/103727/1/000922075.pdfc0dd95b4ce1d5e7b155ff9337d1ffe9eMD51TEXT000922075.pdf.txt000922075.pdf.txtExtracted Texttext/plain38136http://www.lume.ufrgs.br/bitstream/10183/103727/2/000922075.pdf.txte8e15f9bf7235b5310ee31e7e4465dbeMD52THUMBNAIL000922075.pdf.jpg000922075.pdf.jpgGenerated Thumbnailimage/jpeg2118http://www.lume.ufrgs.br/bitstream/10183/103727/3/000922075.pdf.jpg268849e38fbe33ad55b417e0491aca0fMD5310183/1037272023-07-15 03:28:17.04166oai:www.lume.ufrgs.br:10183/103727Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-07-15T06:28:17Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
PyNetMet : python tools for efficient work with networks and metabolic models |
title |
PyNetMet : python tools for efficient work with networks and metabolic models |
spellingShingle |
PyNetMet : python tools for efficient work with networks and metabolic models Gamermann, Daniel Biologia computacional |
title_short |
PyNetMet : python tools for efficient work with networks and metabolic models |
title_full |
PyNetMet : python tools for efficient work with networks and metabolic models |
title_fullStr |
PyNetMet : python tools for efficient work with networks and metabolic models |
title_full_unstemmed |
PyNetMet : python tools for efficient work with networks and metabolic models |
title_sort |
PyNetMet : python tools for efficient work with networks and metabolic models |
author |
Gamermann, Daniel |
author_facet |
Gamermann, Daniel Montagud Aquino, Arnau Infante, Ramon Jaime Triana, Julian Urchueguía Schölzel, Javier Fermín Fernández de Córdoba Castellá, Pedro José |
author_role |
author |
author2 |
Montagud Aquino, Arnau Infante, Ramon Jaime Triana, Julian Urchueguía Schölzel, Javier Fermín Fernández de Córdoba Castellá, Pedro José |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Gamermann, Daniel Montagud Aquino, Arnau Infante, Ramon Jaime Triana, Julian Urchueguía Schölzel, Javier Fermín Fernández de Córdoba Castellá, Pedro José |
dc.subject.por.fl_str_mv |
Biologia computacional |
topic |
Biologia computacional |
description |
The complexity of genome-scale metabolic models and networks associated to biological systems makes the use of computational tools an essential element in the field of systems biology. Here we present PyNetMet, a Python library of tools to work with networks and metabolic models. These are open-source free tools for use in a Python platform, which adds considerably versatility to them when compared to their desktop similar. On the other hand, these tools allow one to work with different standards of metabolic models (OptGene and SBML) and the fact that they are programmed in Python opens the possibility of efficient integration with any other existing Python package. In order to illustrate the most important features and some uses of our software, we show results obtained in the analysis of metabolic models taken from the literature. For this purpose, three different models (one in OptGene and two in SBML format) were downloaded and throughly analyzed with our software. Also, we performed a comparison of the underlying metabolic networks of these models with randomly generated networks, pointing out the main differences between them. The PyNetMet package is available from the python package index (https://pypi.python.org/pypi/PyNetMet) for different platforms and documentation and more extensive illustrative examples can be found in the webpage pythonhosted.org/PyNetMet/. |
publishDate |
2014 |
dc.date.accessioned.fl_str_mv |
2014-09-24T02:12:55Z |
dc.date.issued.fl_str_mv |
2014 |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/103727 |
dc.identifier.issn.pt_BR.fl_str_mv |
2219-1402 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000922075 |
identifier_str_mv |
2219-1402 000922075 |
url |
http://hdl.handle.net/10183/103727 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Computational and mathematical biology. Kowloon, Hong Kong. Vol. 3, no. 5 (2014), 11 p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/103727/1/000922075.pdf http://www.lume.ufrgs.br/bitstream/10183/103727/2/000922075.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/103727/3/000922075.pdf.jpg |
bitstream.checksum.fl_str_mv |
c0dd95b4ce1d5e7b155ff9337d1ffe9e e8e15f9bf7235b5310ee31e7e4465dbe 268849e38fbe33ad55b417e0491aca0f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447560834252800 |