PyNetMet : python tools for efficient work with networks and metabolic models

Detalhes bibliográficos
Autor(a) principal: Gamermann, Daniel
Data de Publicação: 2014
Outros Autores: Montagud Aquino, Arnau, Infante, Ramon Jaime, Triana, Julian, Urchueguía Schölzel, Javier Fermín, Fernández de Córdoba Castellá, Pedro José
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/103727
Resumo: The complexity of genome-scale metabolic models and networks associated to biological systems makes the use of computational tools an essential element in the field of systems biology. Here we present PyNetMet, a Python library of tools to work with networks and metabolic models. These are open-source free tools for use in a Python platform, which adds considerably versatility to them when compared to their desktop similar. On the other hand, these tools allow one to work with different standards of metabolic models (OptGene and SBML) and the fact that they are programmed in Python opens the possibility of efficient integration with any other existing Python package. In order to illustrate the most important features and some uses of our software, we show results obtained in the analysis of metabolic models taken from the literature. For this purpose, three different models (one in OptGene and two in SBML format) were downloaded and throughly analyzed with our software. Also, we performed a comparison of the underlying metabolic networks of these models with randomly generated networks, pointing out the main differences between them. The PyNetMet package is available from the python package index (https://pypi.python.org/pypi/PyNetMet) for different platforms and documentation and more extensive illustrative examples can be found in the webpage pythonhosted.org/PyNetMet/.
id UFRGS-2_e131fd1834b8e60ff2493dbfc1f7bc7f
oai_identifier_str oai:www.lume.ufrgs.br:10183/103727
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Gamermann, DanielMontagud Aquino, ArnauInfante, Ramon JaimeTriana, JulianUrchueguía Schölzel, Javier FermínFernández de Córdoba Castellá, Pedro José2014-09-24T02:12:55Z20142219-1402http://hdl.handle.net/10183/103727000922075The complexity of genome-scale metabolic models and networks associated to biological systems makes the use of computational tools an essential element in the field of systems biology. Here we present PyNetMet, a Python library of tools to work with networks and metabolic models. These are open-source free tools for use in a Python platform, which adds considerably versatility to them when compared to their desktop similar. On the other hand, these tools allow one to work with different standards of metabolic models (OptGene and SBML) and the fact that they are programmed in Python opens the possibility of efficient integration with any other existing Python package. In order to illustrate the most important features and some uses of our software, we show results obtained in the analysis of metabolic models taken from the literature. For this purpose, three different models (one in OptGene and two in SBML format) were downloaded and throughly analyzed with our software. Also, we performed a comparison of the underlying metabolic networks of these models with randomly generated networks, pointing out the main differences between them. The PyNetMet package is available from the python package index (https://pypi.python.org/pypi/PyNetMet) for different platforms and documentation and more extensive illustrative examples can be found in the webpage pythonhosted.org/PyNetMet/.application/pdfengComputational and mathematical biology. Kowloon, Hong Kong. Vol. 3, no. 5 (2014), 11 p.Biologia computacionalPyNetMet : python tools for efficient work with networks and metabolic modelsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000922075.pdf000922075.pdfTexto completo (inglês)application/pdf835872http://www.lume.ufrgs.br/bitstream/10183/103727/1/000922075.pdfc0dd95b4ce1d5e7b155ff9337d1ffe9eMD51TEXT000922075.pdf.txt000922075.pdf.txtExtracted Texttext/plain38136http://www.lume.ufrgs.br/bitstream/10183/103727/2/000922075.pdf.txte8e15f9bf7235b5310ee31e7e4465dbeMD52THUMBNAIL000922075.pdf.jpg000922075.pdf.jpgGenerated Thumbnailimage/jpeg2118http://www.lume.ufrgs.br/bitstream/10183/103727/3/000922075.pdf.jpg268849e38fbe33ad55b417e0491aca0fMD5310183/1037272023-07-15 03:28:17.04166oai:www.lume.ufrgs.br:10183/103727Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-07-15T06:28:17Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv PyNetMet : python tools for efficient work with networks and metabolic models
title PyNetMet : python tools for efficient work with networks and metabolic models
spellingShingle PyNetMet : python tools for efficient work with networks and metabolic models
Gamermann, Daniel
Biologia computacional
title_short PyNetMet : python tools for efficient work with networks and metabolic models
title_full PyNetMet : python tools for efficient work with networks and metabolic models
title_fullStr PyNetMet : python tools for efficient work with networks and metabolic models
title_full_unstemmed PyNetMet : python tools for efficient work with networks and metabolic models
title_sort PyNetMet : python tools for efficient work with networks and metabolic models
author Gamermann, Daniel
author_facet Gamermann, Daniel
Montagud Aquino, Arnau
Infante, Ramon Jaime
Triana, Julian
Urchueguía Schölzel, Javier Fermín
Fernández de Córdoba Castellá, Pedro José
author_role author
author2 Montagud Aquino, Arnau
Infante, Ramon Jaime
Triana, Julian
Urchueguía Schölzel, Javier Fermín
Fernández de Córdoba Castellá, Pedro José
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Gamermann, Daniel
Montagud Aquino, Arnau
Infante, Ramon Jaime
Triana, Julian
Urchueguía Schölzel, Javier Fermín
Fernández de Córdoba Castellá, Pedro José
dc.subject.por.fl_str_mv Biologia computacional
topic Biologia computacional
description The complexity of genome-scale metabolic models and networks associated to biological systems makes the use of computational tools an essential element in the field of systems biology. Here we present PyNetMet, a Python library of tools to work with networks and metabolic models. These are open-source free tools for use in a Python platform, which adds considerably versatility to them when compared to their desktop similar. On the other hand, these tools allow one to work with different standards of metabolic models (OptGene and SBML) and the fact that they are programmed in Python opens the possibility of efficient integration with any other existing Python package. In order to illustrate the most important features and some uses of our software, we show results obtained in the analysis of metabolic models taken from the literature. For this purpose, three different models (one in OptGene and two in SBML format) were downloaded and throughly analyzed with our software. Also, we performed a comparison of the underlying metabolic networks of these models with randomly generated networks, pointing out the main differences between them. The PyNetMet package is available from the python package index (https://pypi.python.org/pypi/PyNetMet) for different platforms and documentation and more extensive illustrative examples can be found in the webpage pythonhosted.org/PyNetMet/.
publishDate 2014
dc.date.accessioned.fl_str_mv 2014-09-24T02:12:55Z
dc.date.issued.fl_str_mv 2014
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/103727
dc.identifier.issn.pt_BR.fl_str_mv 2219-1402
dc.identifier.nrb.pt_BR.fl_str_mv 000922075
identifier_str_mv 2219-1402
000922075
url http://hdl.handle.net/10183/103727
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Computational and mathematical biology. Kowloon, Hong Kong. Vol. 3, no. 5 (2014), 11 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/103727/1/000922075.pdf
http://www.lume.ufrgs.br/bitstream/10183/103727/2/000922075.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/103727/3/000922075.pdf.jpg
bitstream.checksum.fl_str_mv c0dd95b4ce1d5e7b155ff9337d1ffe9e
e8e15f9bf7235b5310ee31e7e4465dbe
268849e38fbe33ad55b417e0491aca0f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447560834252800