Star–galaxy classification in the Dark Energy Survey Y1 data set

Detalhes bibliográficos
Autor(a) principal: Sevilla Noarbe, Ignacio
Data de Publicação: 2018
Outros Autores: Santiago, Basilio Xavier, DES Collaboration
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/195741
Resumo: We perform a comparison of different approaches to star–galaxy classification using the broadband photometric data from Year 1 of the Dark Energy Survey. This is done by performing a wide range of tests with and without external ‘truth’ information, which can be ported to other similar data sets. We make a broad evaluation of the performance of the classifiers in two science cases with DES data that are most affected by this systematic effect: large-scale structure and MilkyWay studies. In general, even though the default morphological classifiers used for DES Y1 cosmology studies are sufficient to maintain a low level of systematic contamination from stellarmisclassification, contamination can be reduced to theO(1 per cent) level by using multi-epoch and infrared information from external data sets. For Milky Way studies, the stellar sample can be augmented by ~20 per cent for a given flux limit.
id UFRGS-2_e6aa1790b413a97effc82670717e8a69
oai_identifier_str oai:www.lume.ufrgs.br:10183/195741
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Sevilla Noarbe, IgnacioSantiago, Basilio XavierDES Collaboration2019-06-13T02:30:54Z20180035-8711http://hdl.handle.net/10183/195741001090634We perform a comparison of different approaches to star–galaxy classification using the broadband photometric data from Year 1 of the Dark Energy Survey. This is done by performing a wide range of tests with and without external ‘truth’ information, which can be ported to other similar data sets. We make a broad evaluation of the performance of the classifiers in two science cases with DES data that are most affected by this systematic effect: large-scale structure and MilkyWay studies. In general, even though the default morphological classifiers used for DES Y1 cosmology studies are sufficient to maintain a low level of systematic contamination from stellarmisclassification, contamination can be reduced to theO(1 per cent) level by using multi-epoch and infrared information from external data sets. For Milky Way studies, the stellar sample can be augmented by ~20 per cent for a given flux limit.application/pdfengMonthly notices of the royal astronomical society. Oxford. Vol. 481, no. 4 (Dec. 2018), p. 5451–5469Catalogos astronomicosFotometria astronômicaMethods: data analysisMethods: statisticalTechniques: photometricStar–galaxy classification in the Dark Energy Survey Y1 data setEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001090634.pdf.txt001090634.pdf.txtExtracted Texttext/plain98484http://www.lume.ufrgs.br/bitstream/10183/195741/2/001090634.pdf.txtdbea09de1a4195a262796c1406f0cd35MD52ORIGINAL001090634.pdfTexto completo (inglês)application/pdf5499872http://www.lume.ufrgs.br/bitstream/10183/195741/1/001090634.pdf91b33badf96653ecd8cecd12ecf8a7f4MD5110183/1957412023-07-02 03:42:25.014696oai:www.lume.ufrgs.br:10183/195741Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-07-02T06:42:25Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Star–galaxy classification in the Dark Energy Survey Y1 data set
title Star–galaxy classification in the Dark Energy Survey Y1 data set
spellingShingle Star–galaxy classification in the Dark Energy Survey Y1 data set
Sevilla Noarbe, Ignacio
Catalogos astronomicos
Fotometria astronômica
Methods: data analysis
Methods: statistical
Techniques: photometric
title_short Star–galaxy classification in the Dark Energy Survey Y1 data set
title_full Star–galaxy classification in the Dark Energy Survey Y1 data set
title_fullStr Star–galaxy classification in the Dark Energy Survey Y1 data set
title_full_unstemmed Star–galaxy classification in the Dark Energy Survey Y1 data set
title_sort Star–galaxy classification in the Dark Energy Survey Y1 data set
author Sevilla Noarbe, Ignacio
author_facet Sevilla Noarbe, Ignacio
Santiago, Basilio Xavier
DES Collaboration
author_role author
author2 Santiago, Basilio Xavier
DES Collaboration
author2_role author
author
dc.contributor.author.fl_str_mv Sevilla Noarbe, Ignacio
Santiago, Basilio Xavier
DES Collaboration
dc.subject.por.fl_str_mv Catalogos astronomicos
Fotometria astronômica
topic Catalogos astronomicos
Fotometria astronômica
Methods: data analysis
Methods: statistical
Techniques: photometric
dc.subject.eng.fl_str_mv Methods: data analysis
Methods: statistical
Techniques: photometric
description We perform a comparison of different approaches to star–galaxy classification using the broadband photometric data from Year 1 of the Dark Energy Survey. This is done by performing a wide range of tests with and without external ‘truth’ information, which can be ported to other similar data sets. We make a broad evaluation of the performance of the classifiers in two science cases with DES data that are most affected by this systematic effect: large-scale structure and MilkyWay studies. In general, even though the default morphological classifiers used for DES Y1 cosmology studies are sufficient to maintain a low level of systematic contamination from stellarmisclassification, contamination can be reduced to theO(1 per cent) level by using multi-epoch and infrared information from external data sets. For Milky Way studies, the stellar sample can be augmented by ~20 per cent for a given flux limit.
publishDate 2018
dc.date.issued.fl_str_mv 2018
dc.date.accessioned.fl_str_mv 2019-06-13T02:30:54Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/195741
dc.identifier.issn.pt_BR.fl_str_mv 0035-8711
dc.identifier.nrb.pt_BR.fl_str_mv 001090634
identifier_str_mv 0035-8711
001090634
url http://hdl.handle.net/10183/195741
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Monthly notices of the royal astronomical society. Oxford. Vol. 481, no. 4 (Dec. 2018), p. 5451–5469
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/195741/2/001090634.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/195741/1/001090634.pdf
bitstream.checksum.fl_str_mv dbea09de1a4195a262796c1406f0cd35
91b33badf96653ecd8cecd12ecf8a7f4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447687906983936