Ion implantation in β-Ga2O3 : Physics and technology

Detalhes bibliográficos
Autor(a) principal: Nikolskaya, Alena
Data de Publicação: 2021
Outros Autores: Okulich, Evgenia, Korolev, Dmitry, Stepanov, Anton V., Nikolichev, Dmitry, Mikhaylov, Alexey, Tetelbaum, David, Almaev, Aleksei, Bolzan, Charles Airton, Buaczick Júnior, Antônio, Giulian, Raquel, Grande, Pedro Luis, Kumar, Ashok, Kumar, Mahesh, Gogova, Daniela
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/241125
Resumo: Gallium oxide, and in particular its thermodynamically stable β-Ga2O3 phase, is within the most exciting materials in research and technology nowadays due to its unique properties. The very high breakdown electric field and the figure of merit rivaled only by diamond have tremendous potential for the next generation “green” electronics enabling efficient distribution, use, and conversion of electrical energy. Ion implantation is a traditional technological method used in these fields, and its well-known advantages can contribute greatly to the rapid development of physics and technology of Ga2O3-based materials and devices. Here, the status of ion implantation in β-Ga2O3 nowadays is reviewed. Attention is mainly paid to the results of experimental study of damage under ion irradiation and the properties of Ga2O3 layers doped by ion implantation. The results of ab initio theoretical calculations of the impurities and defect parameters are briefly presented, and the physical principles of a number of analytical methods used to study implanted gallium oxide layers are highlighted. The use of ion implantation in the development of Ga2O3-based devices, such as metal oxide field-effect transistors, Schottky barrier diodes, and solar-blind UV detectors, is described together with systematical analysis of the achieved values of their characteristics. Finally, the most important challenges to be overcome in this field of science and technology are discussed.
id UFRGS-2_f0a590435f159ec2ff64ce99e7142b8c
oai_identifier_str oai:www.lume.ufrgs.br:10183/241125
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Nikolskaya, AlenaOkulich, EvgeniaKorolev, DmitryStepanov, Anton V.Nikolichev, DmitryMikhaylov, AlexeyTetelbaum, DavidAlmaev, AlekseiBolzan, Charles AirtonBuaczick Júnior, AntônioGiulian, RaquelGrande, Pedro LuisKumar, AshokKumar, MaheshGogova, Daniela2022-06-25T05:06:34Z20210734-2101http://hdl.handle.net/10183/241125001143314Gallium oxide, and in particular its thermodynamically stable β-Ga2O3 phase, is within the most exciting materials in research and technology nowadays due to its unique properties. The very high breakdown electric field and the figure of merit rivaled only by diamond have tremendous potential for the next generation “green” electronics enabling efficient distribution, use, and conversion of electrical energy. Ion implantation is a traditional technological method used in these fields, and its well-known advantages can contribute greatly to the rapid development of physics and technology of Ga2O3-based materials and devices. Here, the status of ion implantation in β-Ga2O3 nowadays is reviewed. Attention is mainly paid to the results of experimental study of damage under ion irradiation and the properties of Ga2O3 layers doped by ion implantation. The results of ab initio theoretical calculations of the impurities and defect parameters are briefly presented, and the physical principles of a number of analytical methods used to study implanted gallium oxide layers are highlighted. The use of ion implantation in the development of Ga2O3-based devices, such as metal oxide field-effect transistors, Schottky barrier diodes, and solar-blind UV detectors, is described together with systematical analysis of the achieved values of their characteristics. Finally, the most important challenges to be overcome in this field of science and technology are discussed.application/pdfengJournal of Vacuum Science & Technology a : Vacuum, Surfaces and Films. New York. Vol. 39, no. 3 (May 2021), 030802, 39 p.Óxido de gálioImplantacao ionicaMicroscopia eletrônica de transmissãoDifração de raios XRetroespalhamento rutherfordMicroscopia eletrônica de transmissãoIon implantation in β-Ga2O3 : Physics and technologyEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001143314.pdf.txt001143314.pdf.txtExtracted Texttext/plain134442http://www.lume.ufrgs.br/bitstream/10183/241125/2/001143314.pdf.txtc4df477f56d2e5b3c3cfe6a2bc4d919bMD52ORIGINAL001143314.pdfTexto completo (inglês)application/pdf4784024http://www.lume.ufrgs.br/bitstream/10183/241125/1/001143314.pdf3ed3d2cf582c050abd92b7ad18dbcf9fMD5110183/2411252023-07-12 03:34:59.063193oai:www.lume.ufrgs.br:10183/241125Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-07-12T06:34:59Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Ion implantation in β-Ga2O3 : Physics and technology
title Ion implantation in β-Ga2O3 : Physics and technology
spellingShingle Ion implantation in β-Ga2O3 : Physics and technology
Nikolskaya, Alena
Óxido de gálio
Implantacao ionica
Microscopia eletrônica de transmissão
Difração de raios X
Retroespalhamento rutherford
Microscopia eletrônica de transmissão
title_short Ion implantation in β-Ga2O3 : Physics and technology
title_full Ion implantation in β-Ga2O3 : Physics and technology
title_fullStr Ion implantation in β-Ga2O3 : Physics and technology
title_full_unstemmed Ion implantation in β-Ga2O3 : Physics and technology
title_sort Ion implantation in β-Ga2O3 : Physics and technology
author Nikolskaya, Alena
author_facet Nikolskaya, Alena
Okulich, Evgenia
Korolev, Dmitry
Stepanov, Anton V.
Nikolichev, Dmitry
Mikhaylov, Alexey
Tetelbaum, David
Almaev, Aleksei
Bolzan, Charles Airton
Buaczick Júnior, Antônio
Giulian, Raquel
Grande, Pedro Luis
Kumar, Ashok
Kumar, Mahesh
Gogova, Daniela
author_role author
author2 Okulich, Evgenia
Korolev, Dmitry
Stepanov, Anton V.
Nikolichev, Dmitry
Mikhaylov, Alexey
Tetelbaum, David
Almaev, Aleksei
Bolzan, Charles Airton
Buaczick Júnior, Antônio
Giulian, Raquel
Grande, Pedro Luis
Kumar, Ashok
Kumar, Mahesh
Gogova, Daniela
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Nikolskaya, Alena
Okulich, Evgenia
Korolev, Dmitry
Stepanov, Anton V.
Nikolichev, Dmitry
Mikhaylov, Alexey
Tetelbaum, David
Almaev, Aleksei
Bolzan, Charles Airton
Buaczick Júnior, Antônio
Giulian, Raquel
Grande, Pedro Luis
Kumar, Ashok
Kumar, Mahesh
Gogova, Daniela
dc.subject.por.fl_str_mv Óxido de gálio
Implantacao ionica
Microscopia eletrônica de transmissão
Difração de raios X
Retroespalhamento rutherford
Microscopia eletrônica de transmissão
topic Óxido de gálio
Implantacao ionica
Microscopia eletrônica de transmissão
Difração de raios X
Retroespalhamento rutherford
Microscopia eletrônica de transmissão
description Gallium oxide, and in particular its thermodynamically stable β-Ga2O3 phase, is within the most exciting materials in research and technology nowadays due to its unique properties. The very high breakdown electric field and the figure of merit rivaled only by diamond have tremendous potential for the next generation “green” electronics enabling efficient distribution, use, and conversion of electrical energy. Ion implantation is a traditional technological method used in these fields, and its well-known advantages can contribute greatly to the rapid development of physics and technology of Ga2O3-based materials and devices. Here, the status of ion implantation in β-Ga2O3 nowadays is reviewed. Attention is mainly paid to the results of experimental study of damage under ion irradiation and the properties of Ga2O3 layers doped by ion implantation. The results of ab initio theoretical calculations of the impurities and defect parameters are briefly presented, and the physical principles of a number of analytical methods used to study implanted gallium oxide layers are highlighted. The use of ion implantation in the development of Ga2O3-based devices, such as metal oxide field-effect transistors, Schottky barrier diodes, and solar-blind UV detectors, is described together with systematical analysis of the achieved values of their characteristics. Finally, the most important challenges to be overcome in this field of science and technology are discussed.
publishDate 2021
dc.date.issued.fl_str_mv 2021
dc.date.accessioned.fl_str_mv 2022-06-25T05:06:34Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/241125
dc.identifier.issn.pt_BR.fl_str_mv 0734-2101
dc.identifier.nrb.pt_BR.fl_str_mv 001143314
identifier_str_mv 0734-2101
001143314
url http://hdl.handle.net/10183/241125
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Journal of Vacuum Science & Technology a : Vacuum, Surfaces and Films. New York. Vol. 39, no. 3 (May 2021), 030802, 39 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/241125/2/001143314.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/241125/1/001143314.pdf
bitstream.checksum.fl_str_mv c4df477f56d2e5b3c3cfe6a2bc4d919b
3ed3d2cf582c050abd92b7ad18dbcf9f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1798487520286081024