Sub-actions for Anosov flows

Detalhes bibliográficos
Autor(a) principal: Lopes, Artur Oscar
Data de Publicação: 2005
Outros Autores: Thieullen, Ph.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/27434
Resumo: Let (M, {Øt }) be a smooth (not necessarily transitive) Anosov flow without fixed points generated by a vector field X(x) = (d/dt)|t=0Øt (x) on a compact manifold M. Let A : M → R be a globally Holder function defined on M. Assume that ∫0T 0 A ◦ Øt (x) dt ≥ 0 for any periodic orbit {Øt (x)}t=T t=0 of period T . Then there exists a H¨older function V : M →R, called a sub-action, smooth in the flow direction, such that A(x) ≥ LXV (x), for all x є M (where LXV = (d/dt)|t=0 V ◦Øt(x) denotes the Lie derivative of V ). If A is Cr then LXV is Cr on any local center-stable manifold.
id UFRGS-2_f1193001c31b4de0cdfd1d283b17f9f0
oai_identifier_str oai:www.lume.ufrgs.br:10183/27434
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Lopes, Artur OscarThieullen, Ph.2011-01-15T05:58:59Z20050143-3857http://hdl.handle.net/10183/27434000453740Let (M, {Øt }) be a smooth (not necessarily transitive) Anosov flow without fixed points generated by a vector field X(x) = (d/dt)|t=0Øt (x) on a compact manifold M. Let A : M → R be a globally Holder function defined on M. Assume that ∫0T 0 A ◦ Øt (x) dt ≥ 0 for any periodic orbit {Øt (x)}t=T t=0 of period T . Then there exists a H¨older function V : M →R, called a sub-action, smooth in the flow direction, such that A(x) ≥ LXV (x), for all x є M (where LXV = (d/dt)|t=0 V ◦Øt(x) denotes the Lie derivative of V ). If A is Cr then LXV is Cr on any local center-stable manifold.application/pdfengErgodic theory and dynamical systems. Cambridge. Vol. 25, no. 2 (Apr. 2005), p. 605-628.Fluxos de anosovSub-actions for Anosov flowsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000453740.pdf000453740.pdfTexto completo (inglês)application/pdf299561http://www.lume.ufrgs.br/bitstream/10183/27434/1/000453740.pdfeecd6f844c84b0d39fcc646d44603f15MD51TEXT000453740.pdf.txt000453740.pdf.txtExtracted Texttext/plain55640http://www.lume.ufrgs.br/bitstream/10183/27434/2/000453740.pdf.txt67295ac80df3a04cb75388418b8fd51eMD52THUMBNAIL000453740.pdf.jpg000453740.pdf.jpgGenerated Thumbnailimage/jpeg1381http://www.lume.ufrgs.br/bitstream/10183/27434/3/000453740.pdf.jpg78824a92dd002cfa64fc1698ae27c435MD5310183/274342021-06-13 04:32:28.946575oai:www.lume.ufrgs.br:10183/27434Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-06-13T07:32:28Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Sub-actions for Anosov flows
title Sub-actions for Anosov flows
spellingShingle Sub-actions for Anosov flows
Lopes, Artur Oscar
Fluxos de anosov
title_short Sub-actions for Anosov flows
title_full Sub-actions for Anosov flows
title_fullStr Sub-actions for Anosov flows
title_full_unstemmed Sub-actions for Anosov flows
title_sort Sub-actions for Anosov flows
author Lopes, Artur Oscar
author_facet Lopes, Artur Oscar
Thieullen, Ph.
author_role author
author2 Thieullen, Ph.
author2_role author
dc.contributor.author.fl_str_mv Lopes, Artur Oscar
Thieullen, Ph.
dc.subject.por.fl_str_mv Fluxos de anosov
topic Fluxos de anosov
description Let (M, {Øt }) be a smooth (not necessarily transitive) Anosov flow without fixed points generated by a vector field X(x) = (d/dt)|t=0Øt (x) on a compact manifold M. Let A : M → R be a globally Holder function defined on M. Assume that ∫0T 0 A ◦ Øt (x) dt ≥ 0 for any periodic orbit {Øt (x)}t=T t=0 of period T . Then there exists a H¨older function V : M →R, called a sub-action, smooth in the flow direction, such that A(x) ≥ LXV (x), for all x є M (where LXV = (d/dt)|t=0 V ◦Øt(x) denotes the Lie derivative of V ). If A is Cr then LXV is Cr on any local center-stable manifold.
publishDate 2005
dc.date.issued.fl_str_mv 2005
dc.date.accessioned.fl_str_mv 2011-01-15T05:58:59Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/27434
dc.identifier.issn.pt_BR.fl_str_mv 0143-3857
dc.identifier.nrb.pt_BR.fl_str_mv 000453740
identifier_str_mv 0143-3857
000453740
url http://hdl.handle.net/10183/27434
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Ergodic theory and dynamical systems. Cambridge. Vol. 25, no. 2 (Apr. 2005), p. 605-628.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/27434/1/000453740.pdf
http://www.lume.ufrgs.br/bitstream/10183/27434/2/000453740.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/27434/3/000453740.pdf.jpg
bitstream.checksum.fl_str_mv eecd6f844c84b0d39fcc646d44603f15
67295ac80df3a04cb75388418b8fd51e
78824a92dd002cfa64fc1698ae27c435
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447421496328192