Sub-actions for Anosov flows
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/27434 |
Resumo: | Let (M, {Øt }) be a smooth (not necessarily transitive) Anosov flow without fixed points generated by a vector field X(x) = (d/dt)|t=0Øt (x) on a compact manifold M. Let A : M → R be a globally Holder function defined on M. Assume that ∫0T 0 A ◦ Øt (x) dt ≥ 0 for any periodic orbit {Øt (x)}t=T t=0 of period T . Then there exists a H¨older function V : M →R, called a sub-action, smooth in the flow direction, such that A(x) ≥ LXV (x), for all x є M (where LXV = (d/dt)|t=0 V ◦Øt(x) denotes the Lie derivative of V ). If A is Cr then LXV is Cr on any local center-stable manifold. |
id |
UFRGS-2_f1193001c31b4de0cdfd1d283b17f9f0 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/27434 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Lopes, Artur OscarThieullen, Ph.2011-01-15T05:58:59Z20050143-3857http://hdl.handle.net/10183/27434000453740Let (M, {Øt }) be a smooth (not necessarily transitive) Anosov flow without fixed points generated by a vector field X(x) = (d/dt)|t=0Øt (x) on a compact manifold M. Let A : M → R be a globally Holder function defined on M. Assume that ∫0T 0 A ◦ Øt (x) dt ≥ 0 for any periodic orbit {Øt (x)}t=T t=0 of period T . Then there exists a H¨older function V : M →R, called a sub-action, smooth in the flow direction, such that A(x) ≥ LXV (x), for all x є M (where LXV = (d/dt)|t=0 V ◦Øt(x) denotes the Lie derivative of V ). If A is Cr then LXV is Cr on any local center-stable manifold.application/pdfengErgodic theory and dynamical systems. Cambridge. Vol. 25, no. 2 (Apr. 2005), p. 605-628.Fluxos de anosovSub-actions for Anosov flowsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000453740.pdf000453740.pdfTexto completo (inglês)application/pdf299561http://www.lume.ufrgs.br/bitstream/10183/27434/1/000453740.pdfeecd6f844c84b0d39fcc646d44603f15MD51TEXT000453740.pdf.txt000453740.pdf.txtExtracted Texttext/plain55640http://www.lume.ufrgs.br/bitstream/10183/27434/2/000453740.pdf.txt67295ac80df3a04cb75388418b8fd51eMD52THUMBNAIL000453740.pdf.jpg000453740.pdf.jpgGenerated Thumbnailimage/jpeg1381http://www.lume.ufrgs.br/bitstream/10183/27434/3/000453740.pdf.jpg78824a92dd002cfa64fc1698ae27c435MD5310183/274342021-06-13 04:32:28.946575oai:www.lume.ufrgs.br:10183/27434Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-06-13T07:32:28Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Sub-actions for Anosov flows |
title |
Sub-actions for Anosov flows |
spellingShingle |
Sub-actions for Anosov flows Lopes, Artur Oscar Fluxos de anosov |
title_short |
Sub-actions for Anosov flows |
title_full |
Sub-actions for Anosov flows |
title_fullStr |
Sub-actions for Anosov flows |
title_full_unstemmed |
Sub-actions for Anosov flows |
title_sort |
Sub-actions for Anosov flows |
author |
Lopes, Artur Oscar |
author_facet |
Lopes, Artur Oscar Thieullen, Ph. |
author_role |
author |
author2 |
Thieullen, Ph. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Lopes, Artur Oscar Thieullen, Ph. |
dc.subject.por.fl_str_mv |
Fluxos de anosov |
topic |
Fluxos de anosov |
description |
Let (M, {Øt }) be a smooth (not necessarily transitive) Anosov flow without fixed points generated by a vector field X(x) = (d/dt)|t=0Øt (x) on a compact manifold M. Let A : M → R be a globally Holder function defined on M. Assume that ∫0T 0 A ◦ Øt (x) dt ≥ 0 for any periodic orbit {Øt (x)}t=T t=0 of period T . Then there exists a H¨older function V : M →R, called a sub-action, smooth in the flow direction, such that A(x) ≥ LXV (x), for all x є M (where LXV = (d/dt)|t=0 V ◦Øt(x) denotes the Lie derivative of V ). If A is Cr then LXV is Cr on any local center-stable manifold. |
publishDate |
2005 |
dc.date.issued.fl_str_mv |
2005 |
dc.date.accessioned.fl_str_mv |
2011-01-15T05:58:59Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/27434 |
dc.identifier.issn.pt_BR.fl_str_mv |
0143-3857 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000453740 |
identifier_str_mv |
0143-3857 000453740 |
url |
http://hdl.handle.net/10183/27434 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Ergodic theory and dynamical systems. Cambridge. Vol. 25, no. 2 (Apr. 2005), p. 605-628. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/27434/1/000453740.pdf http://www.lume.ufrgs.br/bitstream/10183/27434/2/000453740.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/27434/3/000453740.pdf.jpg |
bitstream.checksum.fl_str_mv |
eecd6f844c84b0d39fcc646d44603f15 67295ac80df3a04cb75388418b8fd51e 78824a92dd002cfa64fc1698ae27c435 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447421496328192 |