Efficiency of national and international software in detection of similarity and plagiarism in manuscripts

Detalhes bibliográficos
Autor(a) principal: Krokoscz, Marcelo
Data de Publicação: 2022
Tipo de documento: Artigo
Idioma: por
Título da fonte: Em Questão (Online)
Texto Completo: https://seer.ufrgs.br/index.php/EmQuestao/article/view/123123
Resumo: This study aims to identify the efficiency level of fourteen software for detecting similarities between a text with fragments extracted from online content on financial education, found on open access websites, proceedings of academic events and open and restricted access scientific journals. Fragments extracted from the sources were used to create a cohesive text, written in Portuguese, containing literal textual reproductions, paraphrases, translation from the English language and manipulation with insertion of hidden characters and replacement of words by synonyms. The similarity reports generated by the programs were analyzed according to four criteria: 1 identification of correctly cited fragments; 2 identification of plagiarized fragments; 3 identification of texts manipulated to deceive the software; 4 identification of original sources, which were scored on a scale of 0 to 4 points. Although the Turnitin, Strikeplagiarism and Plagscan software obtained the best performance indices, it was found that the programs operate with variable and limited efficiency, which reinforces the conviction that, although they are useful tools for the identification of plagiarism, they contribute significantly limited by aspects such as recognition mainly of literal textual reproductions that do not always correspond to the original source. The original sources of rewritten, manipulated and translated texts were not found by any software. The study contributes to the improvement of the user's ability to choose, use and analyze the similarity reports generated by software, whose efficiency can be greater in the case of using more than one program.
id UFRGS-8_0ff7175313d0d3359b8bddb63e465f71
oai_identifier_str oai:seer.ufrgs.br:article/123123
network_acronym_str UFRGS-8
network_name_str Em Questão (Online)
repository_id_str
spelling Efficiency of national and international software in detection of similarity and plagiarism in manuscriptsEficiencia del software nacional e internacional en la detección de similitud y plagio en manuscritosEficiência de softwares nacionais e internacionais na detecção de similaridade e de plágio em manuscritoplagiarismsimilarity and plagiarismplagiarism detectionanti-plagiarism softwareplagiosimilitud y plagiodetección de plagiosoftware antiplagioplágiosimilaridade e plágiodetecção de plágiosoftware antiplágioThis study aims to identify the efficiency level of fourteen software for detecting similarities between a text with fragments extracted from online content on financial education, found on open access websites, proceedings of academic events and open and restricted access scientific journals. Fragments extracted from the sources were used to create a cohesive text, written in Portuguese, containing literal textual reproductions, paraphrases, translation from the English language and manipulation with insertion of hidden characters and replacement of words by synonyms. The similarity reports generated by the programs were analyzed according to four criteria: 1 identification of correctly cited fragments; 2 identification of plagiarized fragments; 3 identification of texts manipulated to deceive the software; 4 identification of original sources, which were scored on a scale of 0 to 4 points. Although the Turnitin, Strikeplagiarism and Plagscan software obtained the best performance indices, it was found that the programs operate with variable and limited efficiency, which reinforces the conviction that, although they are useful tools for the identification of plagiarism, they contribute significantly limited by aspects such as recognition mainly of literal textual reproductions that do not always correspond to the original source. The original sources of rewritten, manipulated and translated texts were not found by any software. The study contributes to the improvement of the user's ability to choose, use and analyze the similarity reports generated by software, whose efficiency can be greater in the case of using more than one program.Este estudio tiene como objetivo identificar el nivel de eficiencia de catorce software para detectar similitudes entre un texto con fragmentos extraídos de contenido en línea sobre educación financiera, encontrados en sitios web de acceso abierto, anales de eventos académicos y revistas científicas de acceso abierto y restringido. Se utilizaron fragmentos extraídos de las fuentes para crear un texto cohesivo, escrito en portugués, que contenía reproducciones textuales literales, paráfrasis, traducción del idioma inglés y manipulación con inserción de caracteres ocultos y reemplazo de palabras por sinónimos. Los informes de similitud generados por los programas se analizaron según cuatro criterios: 1 identificación de fragmentos correctamente citados; 2 identificación de fragmentos plagiados; 3 identificación de textos manipulados para engañar al software; 4 Identificación de fuentes originales, las cuales se puntuaron en una escala de 0 a 4 puntos. Si bien los software Turnitin, Strikeplagiarism y Plagscan obtuvieron los mejores índices de desempeño, se encontró que los programas operan con eficiencia variable y limitada, lo que refuerza la convicción de que, si bien son herramientas útiles para la identificación del plagio, contribuyen significativamente limitadas por aspectos como el reconocimiento principalmente de reproducciones textuales literales que no siempre corresponden a la fuente original. Ningún software encontró las fuentes originales de los textos reescritos, manipulados y traducidos. El estudio contribuye a la mejora de la capacidad del usuario para elegir, utilizar y analizar los informes de similitud generados por el software, cuya eficiencia puede ser mayor en el caso de utilizar más de un programa.Este estudo visa identificar a eficiência de quatorze softwares de detecção de similaridades em um texto com fragmentos sobre educação financeira, encontrados em websites da internet, anais de eventos acadêmicos e revistas científicas de acesso aberto e restrito. Os fragmentos foram usados para elaborar um texto coeso, escrito em língua portuguesa, contendo reproduções textuais literais, paráfrases, com trechos traduzidos do idioma inglês, manipulados com inserção de caractere oculto e com substituição de palavras por sinônimos. Os relatórios de similaridade gerados pelos softwares foram analisados de acordo com quatro critérios: 1 identificação de fragmentos citados corretamente; 2 identificação de fragmentos plagiados; 3 identificação de textos manipulados para enganar o software; 4 identificação de fontes originais; os quais foram pontuados em uma escala de 0 a 4 pontos. Os softwares Turnitin, StrikePlagiarism, PlagScan e Plagium tiveram performance elevada e CopySpider e Plagium (complemento do Google) foram os mais ineficientes. Constatou-se que os softwares operam com eficiência variável, o que reforça a convicção de que embora sejam ferramentas úteis para a identificação de plágio, contribuem de forma limitada para aspectos como reconhecimento de reproduções textuais literais que nem sempre correspondem à fonte original. As fontes originais de textos reescritos, manipulados e traduzidos não foram encontradas por nenhum software. O estudo contribui para o aprimoramento da capacidade do usuário na escolha, uso e análise dos relatórios de similaridades gerados por softwares, cuja eficiência pode ser maior no caso da utilização de mais de um software.Universidade Federal do Rio Grande do Sul, Faculdade de Biblioteconomia e Comunicação, Programa de Pós-Graduação em Ciência da Informação (Porto Alegre/RS)2022-09-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionText;Texto;Avaliado por ParesTextoapplication/pdfhttps://seer.ufrgs.br/index.php/EmQuestao/article/view/12312310.19132/1808-5245284.123123Em Questão; v.28, n.4, out./dez. 2022; 123123Em Questão; v.28, n.4, out./dez. 2022; 123123Em Questão; v.28, n.4, out./dez. 2022; 1231231808-52451807-8893reponame:Em Questão (Online)instname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSporhttps://seer.ufrgs.br/index.php/EmQuestao/article/view/123123/85885Copyright (c) 2022 Marcelo Krokosczhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessKrokoscz, Marcelo2023-04-17T15:05:31Zoai:seer.ufrgs.br:article/123123Revistahttps://seer.ufrgs.br/emquestao/PUBhttps://seer.ufrgs.br/EmQuestao/oaiemquestao@ufrgs.br||emquestao@ufrgs.br1808-52451807-8893opendoar:2023-04-17T15:05:31Em Questão (Online) - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.none.fl_str_mv Efficiency of national and international software in detection of similarity and plagiarism in manuscripts
Eficiencia del software nacional e internacional en la detección de similitud y plagio en manuscritos
Eficiência de softwares nacionais e internacionais na detecção de similaridade e de plágio em manuscrito
title Efficiency of national and international software in detection of similarity and plagiarism in manuscripts
spellingShingle Efficiency of national and international software in detection of similarity and plagiarism in manuscripts
Krokoscz, Marcelo
plagiarism
similarity and plagiarism
plagiarism detection
anti-plagiarism software
plagio
similitud y plagio
detección de plagio
software antiplagio
plágio
similaridade e plágio
detecção de plágio
software antiplágio
title_short Efficiency of national and international software in detection of similarity and plagiarism in manuscripts
title_full Efficiency of national and international software in detection of similarity and plagiarism in manuscripts
title_fullStr Efficiency of national and international software in detection of similarity and plagiarism in manuscripts
title_full_unstemmed Efficiency of national and international software in detection of similarity and plagiarism in manuscripts
title_sort Efficiency of national and international software in detection of similarity and plagiarism in manuscripts
author Krokoscz, Marcelo
author_facet Krokoscz, Marcelo
author_role author
dc.contributor.author.fl_str_mv Krokoscz, Marcelo
dc.subject.por.fl_str_mv plagiarism
similarity and plagiarism
plagiarism detection
anti-plagiarism software
plagio
similitud y plagio
detección de plagio
software antiplagio
plágio
similaridade e plágio
detecção de plágio
software antiplágio
topic plagiarism
similarity and plagiarism
plagiarism detection
anti-plagiarism software
plagio
similitud y plagio
detección de plagio
software antiplagio
plágio
similaridade e plágio
detecção de plágio
software antiplágio
description This study aims to identify the efficiency level of fourteen software for detecting similarities between a text with fragments extracted from online content on financial education, found on open access websites, proceedings of academic events and open and restricted access scientific journals. Fragments extracted from the sources were used to create a cohesive text, written in Portuguese, containing literal textual reproductions, paraphrases, translation from the English language and manipulation with insertion of hidden characters and replacement of words by synonyms. The similarity reports generated by the programs were analyzed according to four criteria: 1 identification of correctly cited fragments; 2 identification of plagiarized fragments; 3 identification of texts manipulated to deceive the software; 4 identification of original sources, which were scored on a scale of 0 to 4 points. Although the Turnitin, Strikeplagiarism and Plagscan software obtained the best performance indices, it was found that the programs operate with variable and limited efficiency, which reinforces the conviction that, although they are useful tools for the identification of plagiarism, they contribute significantly limited by aspects such as recognition mainly of literal textual reproductions that do not always correspond to the original source. The original sources of rewritten, manipulated and translated texts were not found by any software. The study contributes to the improvement of the user's ability to choose, use and analyze the similarity reports generated by software, whose efficiency can be greater in the case of using more than one program.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-27
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Text;
Texto;
Avaliado por Pares
Texto
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.ufrgs.br/index.php/EmQuestao/article/view/123123
10.19132/1808-5245284.123123
url https://seer.ufrgs.br/index.php/EmQuestao/article/view/123123
identifier_str_mv 10.19132/1808-5245284.123123
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://seer.ufrgs.br/index.php/EmQuestao/article/view/123123/85885
dc.rights.driver.fl_str_mv Copyright (c) 2022 Marcelo Krokoscz
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Marcelo Krokoscz
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Sul, Faculdade de Biblioteconomia e Comunicação, Programa de Pós-Graduação em Ciência da Informação (Porto Alegre/RS)
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Sul, Faculdade de Biblioteconomia e Comunicação, Programa de Pós-Graduação em Ciência da Informação (Porto Alegre/RS)
dc.source.none.fl_str_mv Em Questão; v.28, n.4, out./dez. 2022; 123123
Em Questão; v.28, n.4, out./dez. 2022; 123123
Em Questão; v.28, n.4, out./dez. 2022; 123123
1808-5245
1807-8893
reponame:Em Questão (Online)
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Em Questão (Online)
collection Em Questão (Online)
repository.name.fl_str_mv Em Questão (Online) - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv emquestao@ufrgs.br||emquestao@ufrgs.br
_version_ 1789438636720128000