Comparação de Imagens OLI/Landsat-8 e MSI/Sentinel-2 no Mapeamento de Cobertura e Uso da Terra no Maciço de Uruburetama, Ceará
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Anuário do Instituto de Geociências (Online) |
Texto Completo: | https://revistas.ufrj.br/index.php/aigeo/article/view/31379 |
Resumo: | Imagens orbitais da série Landsat têm sido sistematicamente empregadas no mapeamento de cobertura e uso da terra. Porém, algumas áreas, devido às características de relevo ou a forte influência antrópica, impõem dificuldades nesta caracterização. O maciço de Uruburetama, no estado do Ceará, representa uma área com tais particularidades. Na tentativa de gerar melhores resultados na identificação e delimitação das diferentes classes de cobertura e uso da terra no maciço, este trabalho compara imagens dos sensores orbitais OLI/ Landsat-8 e MSI/Sentinel-2, a fim de definir qual produto pode ser melhor empregado em estudos desta finalidade. A metodologia partiuda obtenção de imagens orbitais da área, passando por etapas de pré-processamento, geração de NDVI, segmentação por crescimento de regiões, classificação supervisionada, validação da classificação e produção dos mapas temáticos. Os produtos NDVI apresentaram correlação positiva muito forte, evidenciando compatibilidade espectral entre os sensores. Na etapa de segmentação, percebeu-se a influência da melhor resolução espacial do sensor MSI com a criação de quase oito vezes mais polígonos e uma área média correspondente a 12,5% a medida do sensor OLI. A classificação supervisionada utilizando o algoritmo Bhattacharya possibilitou mapear os dois produtos em sete classes temáticas de cobertura e uso da terra do maciço de Uruburetama: Mata Úmida; Mata Seca; Caatinga Arbustiva Densa; Caatinga Arbustiva Aberta; Urbano/Solo Exposto; Corpos D’água e Cultivos. A validação das classificações atestou a melhor acurácia do produto MSI/Sentinel-2 por meio dos índices Kappa e exatidão global. Os resultados demonstram que a imagem MSI/Sentinel-2, devido a sua melhor resolução espacial, permite um maior detalhamento dos alvos, e maior acurácia na classificação, o que possibilita a sua aplicação em estudos com maiores escalas de análise. Por sua vez, a imagem OLI/Landsat-8, demonstrou ser mais adequada a estudos com menores níveis de detalhes, ou com alvos mais homogêneos. |
id |
UFRJ-21_0df8df063bf51ff8555fcb843643571c |
---|---|
oai_identifier_str |
oai:www.revistas.ufrj.br:article/31379 |
network_acronym_str |
UFRJ-21 |
network_name_str |
Anuário do Instituto de Geociências (Online) |
repository_id_str |
|
spelling |
Comparação de Imagens OLI/Landsat-8 e MSI/Sentinel-2 no Mapeamento de Cobertura e Uso da Terra no Maciço de Uruburetama, Cearácobertura e uso da terra; NDVI; segmentação por regiões; classificação supervisionadaImagens orbitais da série Landsat têm sido sistematicamente empregadas no mapeamento de cobertura e uso da terra. Porém, algumas áreas, devido às características de relevo ou a forte influência antrópica, impõem dificuldades nesta caracterização. O maciço de Uruburetama, no estado do Ceará, representa uma área com tais particularidades. Na tentativa de gerar melhores resultados na identificação e delimitação das diferentes classes de cobertura e uso da terra no maciço, este trabalho compara imagens dos sensores orbitais OLI/ Landsat-8 e MSI/Sentinel-2, a fim de definir qual produto pode ser melhor empregado em estudos desta finalidade. A metodologia partiuda obtenção de imagens orbitais da área, passando por etapas de pré-processamento, geração de NDVI, segmentação por crescimento de regiões, classificação supervisionada, validação da classificação e produção dos mapas temáticos. Os produtos NDVI apresentaram correlação positiva muito forte, evidenciando compatibilidade espectral entre os sensores. Na etapa de segmentação, percebeu-se a influência da melhor resolução espacial do sensor MSI com a criação de quase oito vezes mais polígonos e uma área média correspondente a 12,5% a medida do sensor OLI. A classificação supervisionada utilizando o algoritmo Bhattacharya possibilitou mapear os dois produtos em sete classes temáticas de cobertura e uso da terra do maciço de Uruburetama: Mata Úmida; Mata Seca; Caatinga Arbustiva Densa; Caatinga Arbustiva Aberta; Urbano/Solo Exposto; Corpos D’água e Cultivos. A validação das classificações atestou a melhor acurácia do produto MSI/Sentinel-2 por meio dos índices Kappa e exatidão global. Os resultados demonstram que a imagem MSI/Sentinel-2, devido a sua melhor resolução espacial, permite um maior detalhamento dos alvos, e maior acurácia na classificação, o que possibilita a sua aplicação em estudos com maiores escalas de análise. Por sua vez, a imagem OLI/Landsat-8, demonstrou ser mais adequada a estudos com menores níveis de detalhes, ou com alvos mais homogêneos.Universidade Federal do Rio de JaneiroFreires, Eduardo VianaNeto, Cláudio Ângelo da SilvaCunha, Dominick Sávio RochaDuarte, Cynthia RomarizVeríssimo, César Ulisses VieiraGomes, Daniel Dantas Moreira2020-01-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufrj.br/index.php/aigeo/article/view/3137910.11137/2019_4_427_442Anuário do Instituto de Geociências; Vol 42, No 4 (2019); 427-442Anuário do Instituto de Geociências; Vol 42, No 4 (2019); 427-4421982-39080101-9759reponame:Anuário do Instituto de Geociências (Online)instname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJporhttps://revistas.ufrj.br/index.php/aigeo/article/view/31379/17885Copyright (c) 2020 Anuário do Instituto de Geociênciashttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2020-01-02T19:26:39Zoai:www.revistas.ufrj.br:article/31379Revistahttps://revistas.ufrj.br/index.php/aigeo/indexPUBhttps://revistas.ufrj.br/index.php/aigeo/oaianuario@igeo.ufrj.br||1982-39080101-9759opendoar:2020-01-02T19:26:39Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)false |
dc.title.none.fl_str_mv |
Comparação de Imagens OLI/Landsat-8 e MSI/Sentinel-2 no Mapeamento de Cobertura e Uso da Terra no Maciço de Uruburetama, Ceará |
title |
Comparação de Imagens OLI/Landsat-8 e MSI/Sentinel-2 no Mapeamento de Cobertura e Uso da Terra no Maciço de Uruburetama, Ceará |
spellingShingle |
Comparação de Imagens OLI/Landsat-8 e MSI/Sentinel-2 no Mapeamento de Cobertura e Uso da Terra no Maciço de Uruburetama, Ceará Freires, Eduardo Viana cobertura e uso da terra; NDVI; segmentação por regiões; classificação supervisionada |
title_short |
Comparação de Imagens OLI/Landsat-8 e MSI/Sentinel-2 no Mapeamento de Cobertura e Uso da Terra no Maciço de Uruburetama, Ceará |
title_full |
Comparação de Imagens OLI/Landsat-8 e MSI/Sentinel-2 no Mapeamento de Cobertura e Uso da Terra no Maciço de Uruburetama, Ceará |
title_fullStr |
Comparação de Imagens OLI/Landsat-8 e MSI/Sentinel-2 no Mapeamento de Cobertura e Uso da Terra no Maciço de Uruburetama, Ceará |
title_full_unstemmed |
Comparação de Imagens OLI/Landsat-8 e MSI/Sentinel-2 no Mapeamento de Cobertura e Uso da Terra no Maciço de Uruburetama, Ceará |
title_sort |
Comparação de Imagens OLI/Landsat-8 e MSI/Sentinel-2 no Mapeamento de Cobertura e Uso da Terra no Maciço de Uruburetama, Ceará |
author |
Freires, Eduardo Viana |
author_facet |
Freires, Eduardo Viana Neto, Cláudio Ângelo da Silva Cunha, Dominick Sávio Rocha Duarte, Cynthia Romariz Veríssimo, César Ulisses Vieira Gomes, Daniel Dantas Moreira |
author_role |
author |
author2 |
Neto, Cláudio Ângelo da Silva Cunha, Dominick Sávio Rocha Duarte, Cynthia Romariz Veríssimo, César Ulisses Vieira Gomes, Daniel Dantas Moreira |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
Freires, Eduardo Viana Neto, Cláudio Ângelo da Silva Cunha, Dominick Sávio Rocha Duarte, Cynthia Romariz Veríssimo, César Ulisses Vieira Gomes, Daniel Dantas Moreira |
dc.subject.por.fl_str_mv |
cobertura e uso da terra; NDVI; segmentação por regiões; classificação supervisionada |
topic |
cobertura e uso da terra; NDVI; segmentação por regiões; classificação supervisionada |
description |
Imagens orbitais da série Landsat têm sido sistematicamente empregadas no mapeamento de cobertura e uso da terra. Porém, algumas áreas, devido às características de relevo ou a forte influência antrópica, impõem dificuldades nesta caracterização. O maciço de Uruburetama, no estado do Ceará, representa uma área com tais particularidades. Na tentativa de gerar melhores resultados na identificação e delimitação das diferentes classes de cobertura e uso da terra no maciço, este trabalho compara imagens dos sensores orbitais OLI/ Landsat-8 e MSI/Sentinel-2, a fim de definir qual produto pode ser melhor empregado em estudos desta finalidade. A metodologia partiuda obtenção de imagens orbitais da área, passando por etapas de pré-processamento, geração de NDVI, segmentação por crescimento de regiões, classificação supervisionada, validação da classificação e produção dos mapas temáticos. Os produtos NDVI apresentaram correlação positiva muito forte, evidenciando compatibilidade espectral entre os sensores. Na etapa de segmentação, percebeu-se a influência da melhor resolução espacial do sensor MSI com a criação de quase oito vezes mais polígonos e uma área média correspondente a 12,5% a medida do sensor OLI. A classificação supervisionada utilizando o algoritmo Bhattacharya possibilitou mapear os dois produtos em sete classes temáticas de cobertura e uso da terra do maciço de Uruburetama: Mata Úmida; Mata Seca; Caatinga Arbustiva Densa; Caatinga Arbustiva Aberta; Urbano/Solo Exposto; Corpos D’água e Cultivos. A validação das classificações atestou a melhor acurácia do produto MSI/Sentinel-2 por meio dos índices Kappa e exatidão global. Os resultados demonstram que a imagem MSI/Sentinel-2, devido a sua melhor resolução espacial, permite um maior detalhamento dos alvos, e maior acurácia na classificação, o que possibilita a sua aplicação em estudos com maiores escalas de análise. Por sua vez, a imagem OLI/Landsat-8, demonstrou ser mais adequada a estudos com menores níveis de detalhes, ou com alvos mais homogêneos. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-02 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufrj.br/index.php/aigeo/article/view/31379 10.11137/2019_4_427_442 |
url |
https://revistas.ufrj.br/index.php/aigeo/article/view/31379 |
identifier_str_mv |
10.11137/2019_4_427_442 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistas.ufrj.br/index.php/aigeo/article/view/31379/17885 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Anuário do Instituto de Geociências http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Anuário do Instituto de Geociências http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro |
publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro |
dc.source.none.fl_str_mv |
Anuário do Instituto de Geociências; Vol 42, No 4 (2019); 427-442 Anuário do Instituto de Geociências; Vol 42, No 4 (2019); 427-442 1982-3908 0101-9759 reponame:Anuário do Instituto de Geociências (Online) instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
instacron_str |
UFRJ |
institution |
UFRJ |
reponame_str |
Anuário do Instituto de Geociências (Online) |
collection |
Anuário do Instituto de Geociências (Online) |
repository.name.fl_str_mv |
Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ) |
repository.mail.fl_str_mv |
anuario@igeo.ufrj.br|| |
_version_ |
1797053535801573376 |