Climatologia do Índice do Potencial de Gênese de Ciclones Tropicais nos Oceanos Adjacentes à América do Sul
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Anuário do Instituto de Geociências (Online) |
Texto Completo: | https://revistas.ufrj.br/index.php/aigeo/article/view/39515 |
Resumo: | Os oceanos tropicais/subtropicais adjacentes à América do Sul não são climatologicamente propícios à formação de ciclones tropicais de acordo com a literatura. Entretanto, desde 2004 já foram registrados dois ciclones tropicais no oceano Atlântico sudoeste e um subtropical que teve potencial para se tornar tropical. Locais propícios à gênese de ciclones tropicais podem ser identificados através do índice do potencial de gênese, que é uma metodologia desenvolvida pelo Dr. Kerry Emanuel e colaboradores. Diante disso, o objetivo do estudo é contribuir com o conhecimento climatológico de regiões propícias à gênese de ciclones tropicais nas cercanias da América do Sul usando o índice do potencial de gênese, bem como de outras variáveis atmosféricas e oceânicas importantes para a ciclogênese. Para tanto, são utilizados dados do período de 1989 a 2019 da reanálise ERA5, que é considerada estado-da-arte em termos de reanálise. Os resultados apresentam a climatologia do índice do potencial de gênese bem como dos componentes desse índice e de outras variáveis atmosféricas e oceânicas que são importantes para o desenvolvimento de sistemas tropicais. O principal resultado obtido no estudo é a presença de potencial para a gênese de sistemas tropicais no oceano Atlântico ao longo da costa brasileira. Em outubro, surge um sinal fraco entre a costa da Bahia e Espírito Santo. Esse sinal se intensifica atingindo máxima intensidade entre fevereiro e março, quando também alcança a costa sul do Brasil. Portanto, a utilização de uma metodologia robusta aplicada em dados estado-da-arte desmistifica a hipótese da não existência de potencial para a gênese de ciclones tropicais na costa do Brasil. |
id |
UFRJ-21_648fe4171f7d934015b8aeb6d5975db3 |
---|---|
oai_identifier_str |
oai:www.revistas.ufrj.br:article/39515 |
network_acronym_str |
UFRJ-21 |
network_name_str |
Anuário do Instituto de Geociências (Online) |
repository_id_str |
|
spelling |
Climatologia do Índice do Potencial de Gênese de Ciclones Tropicais nos Oceanos Adjacentes à América do SulÍndice do Potencial de Gênese; Ciclone Tropical; ClimatologiaOs oceanos tropicais/subtropicais adjacentes à América do Sul não são climatologicamente propícios à formação de ciclones tropicais de acordo com a literatura. Entretanto, desde 2004 já foram registrados dois ciclones tropicais no oceano Atlântico sudoeste e um subtropical que teve potencial para se tornar tropical. Locais propícios à gênese de ciclones tropicais podem ser identificados através do índice do potencial de gênese, que é uma metodologia desenvolvida pelo Dr. Kerry Emanuel e colaboradores. Diante disso, o objetivo do estudo é contribuir com o conhecimento climatológico de regiões propícias à gênese de ciclones tropicais nas cercanias da América do Sul usando o índice do potencial de gênese, bem como de outras variáveis atmosféricas e oceânicas importantes para a ciclogênese. Para tanto, são utilizados dados do período de 1989 a 2019 da reanálise ERA5, que é considerada estado-da-arte em termos de reanálise. Os resultados apresentam a climatologia do índice do potencial de gênese bem como dos componentes desse índice e de outras variáveis atmosféricas e oceânicas que são importantes para o desenvolvimento de sistemas tropicais. O principal resultado obtido no estudo é a presença de potencial para a gênese de sistemas tropicais no oceano Atlântico ao longo da costa brasileira. Em outubro, surge um sinal fraco entre a costa da Bahia e Espírito Santo. Esse sinal se intensifica atingindo máxima intensidade entre fevereiro e março, quando também alcança a costa sul do Brasil. Portanto, a utilização de uma metodologia robusta aplicada em dados estado-da-arte desmistifica a hipótese da não existência de potencial para a gênese de ciclones tropicais na costa do Brasil.Universidade Federal do Rio de JaneiroECMWF, Dr. Kerry Emanuel, CNPQ, FAPEMIG, CAPES, Bel. Robson Barreto do Passos, Dr. Eduardo Marcos de Jesus.Andrelina, BrunaReboita, Michelle Simões2021-03-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufrj.br/index.php/aigeo/article/view/3951510.11137/1982-3908_2021_44_39515Anuário do Instituto de Geociências; Vol 44 (2021)Anuário do Instituto de Geociências; Vol 44 (2021)1982-39080101-9759reponame:Anuário do Instituto de Geociências (Online)instname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJporhttps://revistas.ufrj.br/index.php/aigeo/article/view/39515/pdfhttps://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/39515/13823https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/39515/13826https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/39515/14025/*ref*/Aceituno, P. 1980. Relation entre la posicion del anticiclon subtropical y la precipitación en Chile. Relatório do Projeto no E. 551.791 do Departamento de Geofísica da Universidade do Chile. Arya, S.P. 1988. Introduction to micrometeorology. International Geophysics Series, 42: 307. Barrett, B. & Hameed, S. 2017. Seasonal Variability in Precipitation in Central and Southern Chile: Modulation by the South Pacific High. Journal of Climate, 30: 55-69. DOI: https://doi.org/10.1175/JCLI-D-16-0019.1 Bastos, C.C. & Ferreira, N.J. 2000. Análise climatológica da alta subtropical do Atlântico Sul. CEP, 12220(110): 973-990. Berggren, R.; Gibbs, W.J. & Newton, C.W. 1958. Observational characteristics of the jet stream: A survey of the literature. Geneva, WMO Publication 71, 102 p. Bister, M. & Emanuel, K.A. 1998. Dissipative heating and hurricane intensity. Meteorology and Atmospheric Physics, 55: 233–240. DOI: https://doi.org/10.1007/BF01030791 Bosart, L.F. & Lin, S.C. 1984. A diagnostic analysis of the Presidents' Day storm of February 1979. Monthly Weather Review, 112(11): 2148-2177. DOI: https://doi.org/10.1175/1520-0493(1984)112<2148:ADAOTP>2.0.CO;2 Camargo, S.J.; Emanuel, K.A. & Sobe, A.H. 2007. Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis. Journal of Climate, 20: 4819- 4834. DOI: https://doi.org/10.1175/JCLI4282.1 Carvalho, L.M.; Jones, C. & Liebmann, B. 2004. The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. Journal of Climate, 17(1): 88-108. DOI: https://doi.org/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2 Cataldi, M.; Assad, L.PD.F.; Torres Junior, A.R. & Alves, J.L.D. 2010. Estudo da influência das anomalias da TSM do Atlântico Sul extratropical na região da Confluência Brasil-Malvinas no regime hidrometeorológico de verão do Sul e Sudeste do Brasil. Revista Brasileira de Meteorologia, 25(4): 513-524. DOI: https://doi.org/10.1590/S0102-77862010000400010 Chang, S.W.; Holt, T.R. & Sashegyi, K.D. 1996. A numerical study of the ERICA IOP 4 marine cyclone. Monthly Weather Review, 124(1): 27-46. DOI: https://doi.org/10.1175/1520-0493(1996)124<0027:ANSOTE>2.0.CO;2 Copernicus Climate Change Service (C3S). 2017. ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). Disponível em: <https://cds.climate.copernicus.eu/cdsapp#!/home>. Acesso em 10 out. 2020. da Rocha, R.P.; Reboita, M.S.; Gozzo, L.F.; Dutra, L.M.M. & de Jesus, E.M. 2019. Subtropical cyclones over the oceanic basins: a review. Annals of the New York Academy of Sciences, 1436(1): 138-156. DOI: https://doi.org/10.1111/nyas.13927 de Jesus, E.M.; da Rocha, R.P.; Crespo, N.M.; Reboita, M.S. & Gozzo, L.F. 2020. Multi-model climate projections of the main cyclogenesis hot-spots and associated winds over the eastern coast of South America. Climate Dynamics, 1-21. DOI: http://dx.doi.org/10.1007/s00382-020-05490-1 DeMaria, M.; Knaff, J.A. & Connell, B.H. 2001. A tropical cyclone genesis parameter for the tropical Atlantic. Weather and Forecasting, 16(2): 219-233. DOI: https://doi.org/10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2 Dias Pinto, J.R.; Reboita, M.S. & da Rocha, R.P. 2013. Synoptic and dynamical analysis of subtropical cyclone Anita (2010) and its potential for tropical transition over the South Atlantic Ocean. Journal of Geophysical Research: Atmospheres, 118(19): 10-870. DOI: https://doi.org/10.1002/jgrd.50830 Dutra, L.M.M.; da Rocha, R.P.; Lee, R.W.; Peres, J.R.R. & de Camargo, R. 2017. Structure and evolution of subtropical cyclone Anita as evaluated by heat and vorticity budgets. Quarterly Journal of the Royal Meteorological Society, 143(704): 1539-1553. DOI: https://doi.org/10.1002/qj.3024 Emanuel, K.A. 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. Journal of the Atmospheric Sciences, 43(6): 585-605. DOI: https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2 Emanuel, K.A. 1991. The theory of hurricanes. Annual Review of Fluid Mechanics, 23(1): 179-196. Emanuel, K.A. & Nolan, D.S. 2004. Tropical cyclone activity and global climate system. In: 26th CONFERENCE ON HURRICANES AND TROPICAL METEOROLGY, Miami, 2004. Expanded abstracts, Miami, p. 240–241. Emanuel, K. 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436(7051): 686-688. DOI: https://doi.org/10.1038/nature03906 Emanuel, K. 2018. 100 Years of Progress in Tropical Cyclone Research. Meteorological Monographs, 59(1): 15-1. DOI: https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1 Escobar, G.C.J. & Reboita, M.S. 2020. Relationship between daily atmospheric circulation patterns and South Atlantic Convergence Zone (SACZ) events. Early view. Atmósfera. DOI: https://10.20937/ATM.52936 Evans, J.L. & Braun, A. 2012. A climatology of subtropical cyclones in the South Atlantic. Journal of Climate, 25(21): 7328-7340. DOI: https://doi.org/10.1175/JCLI-D-11-00212.1 Evans, J.L. & Guishard, M.P. 2009. Atlantic subtropical storms. Part I: Diagnostic criteria and composite analysis. Monthly Weather Review, 137(7): 2065-2080. DOI: https://doi.org/10.1175/2009MWR2468.1 Ferreira, A.G. & da Silva Mello, N.G. 2005. Principais sistemas atmosféricos atuantes sobre a região Nordeste do Brasil e a influência dos oceanos Pacífico e Atlântico no clima da região. Revista Brasileira de Climatologia, 1(1): 15-28. DOI: http://dx.doi.org/10.5380/abclima.v1i1.25215 Ferreira, G.W.S.; Reboita, M.S. & da Rocha, R.P. 2019. Vórtices Ciclônicos de Altos Níveis nas Cercanias do Nordeste do Brasil: Climatologia e Análise da Vorticidade Potencial Isentrópica. Anuário do Instituto de Geociências, 42(3): 568-585. DOI: http://dx.doi.org/10.11137/2019_3_568_585 Frank, W.M. 1977. The structure and energetics of the tropical cyclone I. Storm structure. Monthly Weather Review, 105(9): 1119-1135. DOI: https://doi.org/10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2 Frank, W.M. & Ritchie, E.A. 2001. Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Monthly weather review, 129(9): 2249-2269. DOI: https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2 Galvin, J.F.P. 2008. The weather and climate of the tropics: Part 7 - Tropical revolving storms. Weather, 63(11): 327-333. DOI: https://doi.org/10.1002/wea.252 Gan, M.A. & Rao, V.B. 1991. Surface cyclogenesis over South America. Monthly Weather Review, 119(5): 1293-1302. DOI: https://doi.org/10.1175/1520-0493(1991)119<1293:SCOSA>2.0.CO;2 Garbarini, E.M.; González, M.H. & Rolla, A.L. 2019. The influence of Atlantic High on seasonal rainfall in Argentina. International Journal of Climatology, 39: 4688- 4702. DOI: https://doi.org/10.1002/joc.6098 Garbarini, E.M.; González, M.H. & Rolla, A.L. 2020. Modulation of Seasonal Precipitation in Argentina by The South Pacific High. International Journal of Climatology, 41(S1): 1-3324. DOI: https://doi.org/10.1002/joc.6924 Garreaud, R.D. & Falvey, M. 2009. The coastal winds off western subtropical South America in future climate scenarios. International Journal of Climatology, 29(4): 543-554. DOI: https://doi.org/10.1002/joc.1716 Garreaud, R.D. & Rutllant, J. 2003. Coastal lows along the subtropical west coast of South America: Numerical simulation of a typical case. Monthly Weather Review, 131(5): 891-908. DOI: https://doi.org/10.1175/1520-0493(2003)131<0891:CLATSW>2.0.CO;2 Garreaud, R.D.; Rutllant, J.A. & Fuenzalida, H. 2002. Coastal lows along the subtropical west coast of South America: Mean structure and evolution. Monthly Weather Review, 130(1): 75-88. DOI:https://doi.org/10.1175/1520-0493(2002)130<0075:CLATSW>2.0.CO;2 Gozzo, L.F.; da Rocha, R.P.; Gimeno, L. & Drumond, A. 2017. Climatology and numerical case study of moisture sources associated with subtropical cyclogenesis over the southwestern Atlantic Ocean. Journal of Geophysical Research: Atmospheres, 122(11): 5636-5653. DOI: https://doi.org/10.1002/2016JD025764 Gozzo, L.F.; da Rocha, R.P.; Reboita, M.S. & Sugahara, S. 2014. Subtropical cyclones over the southwestern South Atlantic: Climatological aspects and case study. Journal of Climate, 27(22): 8543-8562. DOI: https://doi.org/10.1175/JCLI-D-14-00149.1 Gramcianinov, C.B. 2019. Changes in South Atlantic Cyclones due Climate Change. Programa de Pós-graduação em Meteorologia, Universidade de São Paulo, Tese de Doutorado, 224p. Gramcianinov, C.B.; Campos, R.M.; de Camargo, R.; Hodges, K.I.; Soares, C.G. & Silva Dias, P.L. 2020. Analysis of Atlantic extratropical storm tracks characteristics in 41 years of ERA5 and CFSR/CFSv2 databases. Ocean Engineering, 216: 108111. DOI: https://doi.org/10.1016/j.oceaneng.2020.108111 Gray, W.M. 1968. Global View of the origin of Tropical Disturbances and Storms. Monthly Weather Review, 96(10): 669-700. DOI: https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2 Grodsky, S.A. & Carton, J.A. 2003. The intertropical convergence zone in the South Atlantic and the equatorial cold tongue. Journal of Climate, 16(4): 723-733. DOI: https://doi.org/10.1175/1520-0442(2003)016<0723:TICZIT>2.0.CO;2 Guia, C. 2010. Análises das características sinóticas das trajetórias dos ciclones extratropicais que atuam na América do Sul e Vizinhanças. Programa de Pós-graduação em Meteorologia, Instituto Nacional de Pesquisas Espaciais, Tese de Doutorado, 105p. Guishard, M.P. 2006. Atlantic subtropical storms: Climatology and characteristics. Programa de Pós-graduação em Meteorologia, Pennsylvania State University, Tese de Doutorado, 158p. Hart, R.E. 2003. A cyclone phase space derived from thermal wind and thermal asymmetry. Monthly Weather Review, 131(4): 585-616. DOI: https://doi.org/10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2 Hastenrath, S. 2012. Climate dynamics of the tropics (Vol. 8). Dordrecht, Springer Science & Business Media, 488 p. He, J.; Gong, S.; Liu, H.; An, X.; Yu, Y.; Zhao, S.; Wu, L.; Song, C.; Xhou, C.; Wang, J.; Yin, C. & Yu, L. 2017. Influences of meteorological conditions on interannual variations of particulate matter pollution during winter in the Beijing–Tianjin–Hebei area. Journal of Meteorological Research, 31(6): 1062-1069. DOI: https://doi.org/10.1007/s13351-017-7039-9 Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; Abdalla, S.; Abellan, X.; Balsamo, G.; Bechtold, P.; Biavati, G.; Bidlot, J.; Bonavita, M.; de Chiara, G.; Dahlgren, P.; Dee, D.; Diamantakis, M.; Dragani, R.; Flemming, J.; Forbes, R.; Fuentes, M.; Geer, A.; Haimberger, L.; Healy, S.; Hogan, R.J.; Hólm, E.; Janisková, M.; Keeley, S.; Laloyaux, P.; Lopez, P.; Lupu, C.; Radnoti, G.; de Rosnay, P.; Rozum, I.; Vamborg, F.; Vilaume, S. & Thépaut, J.N. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999-2049. DOI: https://doi.org/10.1002/qj.3803 Holton, J.R. 1973. An introduction to dynamic meteorology. American Journal of Physics, 41(5): 752-754. Hoskins, B.J. & Hodges, K.I. 2005. A new perspective on Southern Hemisphere storm tracks. Journal of Climate, 18(20): 4108-4129. DOI: https://doi.org/10.1175/JCLI3570.1 Jin, Z.; You, Q.; Mu, M.; Sun, G. & Pepin, N. 2020. Fingerprints of anthropogenic influences on vegetation change over the Tibetan Plateau from an eco‐hydrological diagnosis. Geophysical Research Letters, 47(15):1-22. DOI: https://doi.org/10.1029/2020GL087842 Kepert, J.D. 2010. Tropical cyclone structure and dynamics. In: CHAN, J.C. & KEPERT, J.D. (Eds.). Global perspectives on Tropical cyclones: from science to mitigation. Editora World Scientific, p. 3-53. Kodama, Y. 1992. Large-scale common features of subtropical precipitation zones (the Baiu frontal zone, the SPCZ, and the SACZ) Part I: Characteristics of subtropical frontal zones. Journal of the Meteorological Society of Japan. Ser. II, 70(4): 813-836. DOI: https://doi.org/10.2151/jmsj1965.70.4_813 Kousky, V.E. 1988. Pentad outgoing longwave radiation climatology for the South American sector. Revista Brasileira de Meteorologia, 3(1): 217-231. Kuo, Y.H., Low-Nam, S. & Reed, R.J. 1991. Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic. Monthly Weather Review, 119(2): 457-476. DOI: https://doi.org/10.1175/1520-0493(1991)119<0457:EOSEFD>2.0.CO;2 Kuo, Y.H. & Reed, R.J. 1988. Numerical simulation of an explosively deepening cyclone in the eastern Pacific. Monthly Weather Review, 116(10): 2081-2105. DOI: https://doi.org/10.1175/1520-0493(1988)116<2081:NSOAED>2.0.CO;2 Lin, S.J. & Chou, K.H. 2020. The Lightning Distribution of Tropical Cyclones over the Western North Pacific. Monthly Weather Review, 148(11): 4415-4434. DOI: https://doi.org/10.1175/MWR-D-19-0327.1 Marengo, J.A.; Alves, L.M.; Ambrizzi, T.; Young, A.; Barreto, N.J. & Ramos, A.M. 2020. Trends in extreme rainfall and hydrogeometeorological disasters in the Metropolitan Area of São Paulo: a review. Annals of the New York Academy of Sciences, 1471(1): 1–16. DOI: https://doi.org/10.1111/nyas.14307 Marrafon, V.H.D.A. & Reboita, M.S. 2019. Revisitando a Equação do Desenvolvimento de Sutcliffe. Anuário do Instituto de Geociências, 41(3): 614-629. DOI: http://dx.doi.org/10.11137/2018_3_614_629 McTaggart-Cowan, R.; Bosart, L.F.; Davis, C.A.; Atallah, E.H.; Gyakum, J.R. & Emanuel, K.A. 2006. Analysis of Hurricane Catarina (2004). Monthly Weather Review, 134: 3029–3053. DOI: https://doi.org/10.1175/MWR3330.1 McTaggart-Cowan, R., Davies, E.L., Fairman, J.G., Galarneau, T.J. & Schultz, D.M. 2015. Revisiting the 26.5°C Sea Surface Temperature Threshold for Tropical Cyclone Development. Bulletin of the American Meteorological Society, 96: 1929–1943. DOI: https://doi.org/10.1175/BAMS-D-13-00254.1 McTaggart-Cowan, R.; Galarneau Jr, T.J.; Bosart, L.F.; Moore, R.W. & Martius, O. 2013. A global climatology of baroclinically influenced tropical cyclogenesis. Monthly Weather Review, 141(6): 1963-1989. DOI: https://doi.org/10.1175/MWR-D-12-00186.1 Mendonça, F. & Danni-Oliveira, I.M. 2017. Climatologia: noções básicas e climas do Brasil. São Paulo, Oficina de textos, 206 p. Mogil, H.M. 2007. Extreme weather: Understanding the science of hurricanes, tornadoes, floods, heat waves, snow storms, global warming and other atmospheric disturbances. Nova York, Black Dog & Leventhal, 304 p. NOAA. 2018. Rare Subtropical Storm off the Coast of Chile. Disponível em: <https://www.nesdis.noaa.gov/content/rare-subtropical-storm-coast-chile> Acesso em: 12 out. 2020. Nóbrega, R.S. & Santiago, G.A.C.F. 2014. Tendência de temperatura na superfície do mar nos oceanos Atlântico e Pacífico e variabilidade de precipitação em Pernambuco. Mercator (Fortaleza), 13(1): 107-118. DOI: https://doi.org/10.4215/RM2014.1301.0008 Nuss, W.A. & Anthes, R.A. 1987. A numerical investigation of low-level processes in rapid cyclogenesis. Monthly Weather Review, 115(11): 2728-2743. DOI: https://doi.org/10.1175/1520-0493(1987)115<2728:ANIOLL>2.0.CO;2 Palmén, E.H. 1956. A review of knowledge on the formation and development of tropical cyclones. In: TROPICAL CYCLONE SYMPOSIUM, 1956. Proceedings, Brisbane, Australia, Bureau of Meteorology, p. 213–231. Pezza, A.B. & Simmonds, I. 2005. The first South Atlantic hurricane: Unprecedented locking, low shear and climate change. Geophysical Research Letters, 32(15): 1-5. DOI: https://doi.org/10.1029/2005GL023390 Piva, E.; Moscati, M.C.D.L. & Gan, M.A. 2008. Papel dos fluxos de calor latente e sensível em superfície associado a um caso de ciclogênese na costa leste da América do Sul. Revista Brasileira de Meteorologia, 23(4): 450-476. DOI: https://doi.org/10.1590/S0102-77862008000400006 Rahman, M.S. & Islam, A.R.M.T. 2019. Are precipitation concentration and intensity changing in Bangladesh overtimes? Analysis of the possible causes of changes in precipitation systems. Science of The Total Environment, 690: 370-387. DOI: https://doi.org/10.1016/j.scitotenv.2019.06.529 Reboita, M.S. 2008. Ciclones Extratropicais sobre o Atlântico Sul: Simulação Climática e Experimentos de Sensibilidade. 2008. Programa de Pós-graduação em Meteorologia, Universidade de São Paulo, Tese de Doutorado, 360p. Reboita, M.S.; da Rocha, R.P.; Ambrizzi, T. & Sugahara, S. 2010a. South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Climate Dynamics, 35(7): 1331-1347. DOI: https://10.1007/s00382-009-0668-7 Reboita, M.S.; da Rocha, R.P.; Ambrizzi, T. & Caetano, E. 2010b. An assessment of the latent and sensible heat flux on the simulated regional climate over Southwestern South Atlantic Ocean. Climate Dynamics, 34(6): 873-889. DOI: https://10.1007/s00382-009-0681-x Reboita, M.S.; Gan, M.A.; Rocha, R.P.D. & Ambrizzi, T. 2010c. Regimes de precipitação na América do Sul: uma revisão bibliográfica. Revista Brasileira de Meteorologia, 25(2): 185-204. DOI: http://dx.doi.org/10.1590/S0102-77862010000200004 Reboita, M.S.; Krusche, N.; Ambrizzi, T. & da Rocha, R.P.D. 2012. Entendendo o Tempo e o Clima na América do Sul. Terrae Didatica, 8(1): 34-50. Reboita, M.S.; da Rocha, R.P.; Ambrizzi, T. & Gouveia, C.D. 2015. Trend and teleconnection patterns in the climatology of extratropical cyclones over the Southern Hemisphere. Climate Dynamics, 45(7-8): 1929-1944. DOI: https://doi.org/10.1007/s00382-014-2447-3 Reboita, M.S.; Rodrigues, M.; Armando, R.; Freitas, C.; Martins, D. & Miller, G. 2016. Causas da semi-aridez do sertão nordestino. Revista Brasileira de Climatologia, 19: 2237-8642. DOI: http://dx.doi.org/10.5380/abclima.v19i0.42091 Reboita, M.S.; Gan, M.A.; da Rocha, R.P.D. & Custódio, I.S. 2017a. Ciclones em Superfície nas Latitudes Austrais: Parte I-Revisão Bibliográfica. Revista Brasileira de Meteorologia, 32(2): 171-186. DOI: http://dx.doi.org/10.1590/0102-77863220010 Reboita, M.S.; Gan, M.A.; da Rocha, R.P. & Custódio, I.S. 2017b. Ciclones em Superfície nas Latitudes Austrais: Parte II Estudo de Casos. Revista Brasileira de Meteorologia, 32(4): 509-542. DOI: http://dx.doi.org/10.1590/0102-7786324002 Reboita, M.S.; da Rocha, R.P. & Oliveira, D.M.D. 2019a. Key Features and adverse weather of the named subtropical cyclones over the Southwestern South Atlantic Ocean. Atmosphere, 10(1): 6. DOI: https://doi.org/10.3390/atmos10010006 Reboita, M.S.; Ambrizzi, T.; Silva, B.A.; Pinheiro, R.F. & da Rocha, R.P. 2019b. The South Atlantic subtropical anticyclone: present and future climate. Frontiers in Earth Science, 7(8): 1-15. DOI: https://doi.org/10.3389/feart.2019.00008 Reboita, M.S.; Oliveira, D.M.; da Rocha, R.P. & Dutra, L.M.M. 2019c. Subtropical cyclone Anita's potential to tropical transition under warmer sea surface temperature scenarios. Geophysical Research Letters, 46(14): 8484-8489. DOI: https://doi.org/10.1029/2019GL083415 Reboita M.S.; Crespo N.M.; Dutra L.M.M.; Silva B.A.; Capucin, B.C & da Rocha, R.P. 2020. Iba: the First Pure Tropical Cyclogenesis over the Western South Atlantic Ocean. Journal of Geophysical Research: Atmospheres, 126(1): 1-20. DOI: https://10.1029/2020JD033431 Rogers, E. & Bosart, L.F. 1991. A diagnostic study of two intense oceanic cyclones. Monthly Weather Review, 119(4): 965-996. DOI: https://doi.org/10.1175/1520-0493(1991)119<0965:ADSOTI>2.0.CO;2 Santos, D.F. & Reboita, M.S. 2018. Jatos de baixos níveis a leste dos andes: comparação entre duas reanálises. Revista Brasileira de Climatologia, 22: 423-445. DOI: http://dx.doi.org/10.5380/abclima.v22i0.47595 Santos, T.C.D.; Reboita, M.S. & Carvalho, V.S.B. 2018. Investigação da Relação entre Variáveis Atmosféricas e a Concentração de MP10 e O3 no estado de São Paulo. Revista Brasileira de Meteorologia, 33(4): 631-645. DOI: https://doi.org/10.1590/0102-7786334006 Seluchi, M.E. & Garreaud, R.D. 2012. Campos médios e processos físicos associados ao ciclo de vida da Baixa do Chaco. Revista Brasileira de Meteorologia, 27(4): 447-462. DOI: http://dx.doi.org/10.1590/S0102-77862012000400008 Seluchi, M.E. & Saulo, A.C. 2012. Baixa do Noroeste Argentino e Baixa do Chaco: características, diferenças e semelhanças. Revista Brasileira de Meteorologia, 27(1): 49-60. DOI: https://doi.org/10.1590/S0102-77862012000100006 Shapiro, M.A. & Keyser, D. 1990. Fronts, jet streams and the tropopause. In: NEWTON, C.W. & HOLOPAINEN, E.O. (Eds). Extratropical cyclones, American Meteorological Society, p. 167-191. Silva, J.P.R.; Reboita, M.S. & Escobar, G.C.J. 2019. Caracterização da Zona de Convergência do Atlântico Sul em Campos Atmosféricos recentes. Revista Brasileira de Climatologia, 25: 355-37. DOI: http://dx.doi.org/10.5380/abclima.v25i0.64101 Solman, S.A. & Blázquez, J. 2019. Multiscale precipitation variability over South America: Analysis of the added value of CORDEX RCM simulations. Climate Dynamics, 53(3): 1547-1565. DOI: https://doi.org/10.1007/s00382-019-04689-1 Song, Y.; Wang, L.; Lei, X. & Wang, X. 2015. Tropical cyclone genesis potential index over the western North Pacific simulated by CMIP5 models. Advances in Atmospheric Sciences, 32(11): 1539-1550. DOI: https://doi.org/10.1007/s00376-015-4162-3 Tang, B.H.; Fang, J.; Betley, A.; Kilroy, G.; Nakano, M.; Park, M.S.; Rajasree, V.P.M.; Wang, Z.; Wing, A.A. & Wu, L. 2020. Recent advances in research on tropical cyclogenesis. Tropical Cyclone Research and Review, 9: 87-105. DOI: https://doi.org/10.1016/j.tcrr.2020.04.004 Teodoro, T.A.; Reboita, M.S. & Escobar, G.C.J. 2019. Caracterização da Banda Dupla da Zona de Convergência Intertropical (ZCIT) no Oceano Atlântico. Anuário do Instituto de Geociências, 42(2): 282-298. DOI: http://dx.doi.org/10.11137/2019_2_282_298 The Weather Channel. 2018. Extremely Rare Southeast Pacific Subtropical Cyclone Forms Off the Chilean Coast. Disponível em: <https://weather.com s-1torms/hurricane/news/2018-05-08- subtropical-cyclone-chile> Acesso em: 14 out. 2020. Tian, F.; Zhou, T. & Zhang, L. 2013. Tropical cyclone genesis potential index over the western North Pacific simulated by LASG/IAP AGCM. Acta Meteorologica Sinica, 27(1): 50-62. DOI: https://10.1007/s13351-013 Tory, K.J. & Frank, W.M. 2010. Tropical cyclone formation. Global perspectives on tropical cyclones: From science to mitigation, 55-91. DOI: https://doi.org/10.1142/9789814293488_0002 Uccellini, L.W.; Petersen, R.A.; Kocin, P.J.; Brill, K.F. & Tuccillo, J.J. 1987. Synergistic interactions between an upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone. Monthly Weather Review, 115(10): 2227-2261. DOI: https://doi.org/10.1175/1520-0493(1987)115<2227:SIBAUL>2.0.CO;2 Vianello, R. & Alves, A. 2012. Meteorologia básica e aplicações. Viçosa, Editora UFV, 460 p. Wallace, J.M. & Hobbs, P.V. 2006. Atmospheric science: an introductory survey (Vol. 92). Londres, Elsevier, 473 p. Walsh, K.; Lavender, S.; Scoccimarro, E. & Murakami, H. 2013. Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models. Climate Dynamics, 40: 585–599. DOI: https://10.1007/s00382-012-1298-z Wang, B. & Moon, J.Y. 2017. An anomalous genesis potential index for MJO modulation of tropical cyclones. Journal of Climate, 30(11): 4021-4035. DOI: https://doi.org/10.1175/JCLI-D-16-0749.1 Yang, H.; Lohmann, G.; Lu, J.; Gowan, E.J.; Shi, X.; Liu, J. & Wang, Q. 2020. Tropical expansion driven by poleward advancing midlatitude meridional temperature gradients. Journal of Geophysical Research: Atmospheres, 125(16): 1-18. DOI: https://doi.org/10.1029/2020JD033158 Ynoue, R.Y.; Reboita, M.S.; Ambrizzi, T. & da Silva, G.A. 2017. Meteorologia: noções básicas. São Paulo, Oficina de Textos, 182 p. Zehr, R.M. 1992. Tropical cyclogenesis in the western North Pacific. NOAA Tech, Repository NESDIS 61, 181 p. Zhang, M.; Zhou, L.; Chen, D. & Wang, C. 2016. A genesis potential index for W estern N orth P acific tropical cyclones by using oceanic parameters. Journal of Geophysical Research: Oceans, 121(9): 7176-7191. DOI: https://doi.org/10.1002/2016JC011851 Zhang, Y.; Wang, H.; Sun, J. & Drange, H. 2010. Changes in the tropical cyclone genesis potential index over the western North Pacific in the SRES A2 scenario. Advances in Atmospheric Sciences, 27(6): 1246-1258. DOI: https://doi.org/10.1007/s00376-010-9096-1 Zhou, J. & Lau, K.M. 1998. Does a monsoon climate exist over South America? Journal of climate, 11(5): 1020-1040. DOI: https://doi.org/10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2Copyright (c) 2021 Anuário do Instituto de Geociênciashttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2021-05-17T20:24:58Zoai:www.revistas.ufrj.br:article/39515Revistahttps://revistas.ufrj.br/index.php/aigeo/indexPUBhttps://revistas.ufrj.br/index.php/aigeo/oaianuario@igeo.ufrj.br||1982-39080101-9759opendoar:2021-05-17T20:24:58Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)false |
dc.title.none.fl_str_mv |
Climatologia do Índice do Potencial de Gênese de Ciclones Tropicais nos Oceanos Adjacentes à América do Sul |
title |
Climatologia do Índice do Potencial de Gênese de Ciclones Tropicais nos Oceanos Adjacentes à América do Sul |
spellingShingle |
Climatologia do Índice do Potencial de Gênese de Ciclones Tropicais nos Oceanos Adjacentes à América do Sul Andrelina, Bruna Índice do Potencial de Gênese; Ciclone Tropical; Climatologia |
title_short |
Climatologia do Índice do Potencial de Gênese de Ciclones Tropicais nos Oceanos Adjacentes à América do Sul |
title_full |
Climatologia do Índice do Potencial de Gênese de Ciclones Tropicais nos Oceanos Adjacentes à América do Sul |
title_fullStr |
Climatologia do Índice do Potencial de Gênese de Ciclones Tropicais nos Oceanos Adjacentes à América do Sul |
title_full_unstemmed |
Climatologia do Índice do Potencial de Gênese de Ciclones Tropicais nos Oceanos Adjacentes à América do Sul |
title_sort |
Climatologia do Índice do Potencial de Gênese de Ciclones Tropicais nos Oceanos Adjacentes à América do Sul |
author |
Andrelina, Bruna |
author_facet |
Andrelina, Bruna Reboita, Michelle Simões |
author_role |
author |
author2 |
Reboita, Michelle Simões |
author2_role |
author |
dc.contributor.none.fl_str_mv |
ECMWF, Dr. Kerry Emanuel, CNPQ, FAPEMIG, CAPES, Bel. Robson Barreto do Passos, Dr. Eduardo Marcos de Jesus. |
dc.contributor.author.fl_str_mv |
Andrelina, Bruna Reboita, Michelle Simões |
dc.subject.por.fl_str_mv |
Índice do Potencial de Gênese; Ciclone Tropical; Climatologia |
topic |
Índice do Potencial de Gênese; Ciclone Tropical; Climatologia |
description |
Os oceanos tropicais/subtropicais adjacentes à América do Sul não são climatologicamente propícios à formação de ciclones tropicais de acordo com a literatura. Entretanto, desde 2004 já foram registrados dois ciclones tropicais no oceano Atlântico sudoeste e um subtropical que teve potencial para se tornar tropical. Locais propícios à gênese de ciclones tropicais podem ser identificados através do índice do potencial de gênese, que é uma metodologia desenvolvida pelo Dr. Kerry Emanuel e colaboradores. Diante disso, o objetivo do estudo é contribuir com o conhecimento climatológico de regiões propícias à gênese de ciclones tropicais nas cercanias da América do Sul usando o índice do potencial de gênese, bem como de outras variáveis atmosféricas e oceânicas importantes para a ciclogênese. Para tanto, são utilizados dados do período de 1989 a 2019 da reanálise ERA5, que é considerada estado-da-arte em termos de reanálise. Os resultados apresentam a climatologia do índice do potencial de gênese bem como dos componentes desse índice e de outras variáveis atmosféricas e oceânicas que são importantes para o desenvolvimento de sistemas tropicais. O principal resultado obtido no estudo é a presença de potencial para a gênese de sistemas tropicais no oceano Atlântico ao longo da costa brasileira. Em outubro, surge um sinal fraco entre a costa da Bahia e Espírito Santo. Esse sinal se intensifica atingindo máxima intensidade entre fevereiro e março, quando também alcança a costa sul do Brasil. Portanto, a utilização de uma metodologia robusta aplicada em dados estado-da-arte desmistifica a hipótese da não existência de potencial para a gênese de ciclones tropicais na costa do Brasil. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-19 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufrj.br/index.php/aigeo/article/view/39515 10.11137/1982-3908_2021_44_39515 |
url |
https://revistas.ufrj.br/index.php/aigeo/article/view/39515 |
identifier_str_mv |
10.11137/1982-3908_2021_44_39515 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistas.ufrj.br/index.php/aigeo/article/view/39515/pdf https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/39515/13823 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/39515/13826 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/39515/14025 /*ref*/Aceituno, P. 1980. Relation entre la posicion del anticiclon subtropical y la precipitación en Chile. Relatório do Projeto no E. 551.791 do Departamento de Geofísica da Universidade do Chile. Arya, S.P. 1988. Introduction to micrometeorology. International Geophysics Series, 42: 307. Barrett, B. & Hameed, S. 2017. Seasonal Variability in Precipitation in Central and Southern Chile: Modulation by the South Pacific High. Journal of Climate, 30: 55-69. DOI: https://doi.org/10.1175/JCLI-D-16-0019.1 Bastos, C.C. & Ferreira, N.J. 2000. Análise climatológica da alta subtropical do Atlântico Sul. CEP, 12220(110): 973-990. Berggren, R.; Gibbs, W.J. & Newton, C.W. 1958. Observational characteristics of the jet stream: A survey of the literature. Geneva, WMO Publication 71, 102 p. Bister, M. & Emanuel, K.A. 1998. Dissipative heating and hurricane intensity. Meteorology and Atmospheric Physics, 55: 233–240. DOI: https://doi.org/10.1007/BF01030791 Bosart, L.F. & Lin, S.C. 1984. A diagnostic analysis of the Presidents' Day storm of February 1979. Monthly Weather Review, 112(11): 2148-2177. DOI: https://doi.org/10.1175/1520-0493(1984)112<2148:ADAOTP>2.0.CO;2 Camargo, S.J.; Emanuel, K.A. & Sobe, A.H. 2007. Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis. Journal of Climate, 20: 4819- 4834. DOI: https://doi.org/10.1175/JCLI4282.1 Carvalho, L.M.; Jones, C. & Liebmann, B. 2004. The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. Journal of Climate, 17(1): 88-108. DOI: https://doi.org/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2 Cataldi, M.; Assad, L.PD.F.; Torres Junior, A.R. & Alves, J.L.D. 2010. Estudo da influência das anomalias da TSM do Atlântico Sul extratropical na região da Confluência Brasil-Malvinas no regime hidrometeorológico de verão do Sul e Sudeste do Brasil. Revista Brasileira de Meteorologia, 25(4): 513-524. DOI: https://doi.org/10.1590/S0102-77862010000400010 Chang, S.W.; Holt, T.R. & Sashegyi, K.D. 1996. A numerical study of the ERICA IOP 4 marine cyclone. Monthly Weather Review, 124(1): 27-46. DOI: https://doi.org/10.1175/1520-0493(1996)124<0027:ANSOTE>2.0.CO;2 Copernicus Climate Change Service (C3S). 2017. ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). Disponível em: <https://cds.climate.copernicus.eu/cdsapp#!/home>. Acesso em 10 out. 2020. da Rocha, R.P.; Reboita, M.S.; Gozzo, L.F.; Dutra, L.M.M. & de Jesus, E.M. 2019. Subtropical cyclones over the oceanic basins: a review. Annals of the New York Academy of Sciences, 1436(1): 138-156. DOI: https://doi.org/10.1111/nyas.13927 de Jesus, E.M.; da Rocha, R.P.; Crespo, N.M.; Reboita, M.S. & Gozzo, L.F. 2020. Multi-model climate projections of the main cyclogenesis hot-spots and associated winds over the eastern coast of South America. Climate Dynamics, 1-21. DOI: http://dx.doi.org/10.1007/s00382-020-05490-1 DeMaria, M.; Knaff, J.A. & Connell, B.H. 2001. A tropical cyclone genesis parameter for the tropical Atlantic. Weather and Forecasting, 16(2): 219-233. DOI: https://doi.org/10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2 Dias Pinto, J.R.; Reboita, M.S. & da Rocha, R.P. 2013. Synoptic and dynamical analysis of subtropical cyclone Anita (2010) and its potential for tropical transition over the South Atlantic Ocean. Journal of Geophysical Research: Atmospheres, 118(19): 10-870. DOI: https://doi.org/10.1002/jgrd.50830 Dutra, L.M.M.; da Rocha, R.P.; Lee, R.W.; Peres, J.R.R. & de Camargo, R. 2017. Structure and evolution of subtropical cyclone Anita as evaluated by heat and vorticity budgets. Quarterly Journal of the Royal Meteorological Society, 143(704): 1539-1553. DOI: https://doi.org/10.1002/qj.3024 Emanuel, K.A. 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. Journal of the Atmospheric Sciences, 43(6): 585-605. DOI: https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2 Emanuel, K.A. 1991. The theory of hurricanes. Annual Review of Fluid Mechanics, 23(1): 179-196. Emanuel, K.A. & Nolan, D.S. 2004. Tropical cyclone activity and global climate system. In: 26th CONFERENCE ON HURRICANES AND TROPICAL METEOROLGY, Miami, 2004. Expanded abstracts, Miami, p. 240–241. Emanuel, K. 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436(7051): 686-688. DOI: https://doi.org/10.1038/nature03906 Emanuel, K. 2018. 100 Years of Progress in Tropical Cyclone Research. Meteorological Monographs, 59(1): 15-1. DOI: https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1 Escobar, G.C.J. & Reboita, M.S. 2020. Relationship between daily atmospheric circulation patterns and South Atlantic Convergence Zone (SACZ) events. Early view. Atmósfera. DOI: https://10.20937/ATM.52936 Evans, J.L. & Braun, A. 2012. A climatology of subtropical cyclones in the South Atlantic. Journal of Climate, 25(21): 7328-7340. DOI: https://doi.org/10.1175/JCLI-D-11-00212.1 Evans, J.L. & Guishard, M.P. 2009. Atlantic subtropical storms. Part I: Diagnostic criteria and composite analysis. Monthly Weather Review, 137(7): 2065-2080. DOI: https://doi.org/10.1175/2009MWR2468.1 Ferreira, A.G. & da Silva Mello, N.G. 2005. Principais sistemas atmosféricos atuantes sobre a região Nordeste do Brasil e a influência dos oceanos Pacífico e Atlântico no clima da região. Revista Brasileira de Climatologia, 1(1): 15-28. DOI: http://dx.doi.org/10.5380/abclima.v1i1.25215 Ferreira, G.W.S.; Reboita, M.S. & da Rocha, R.P. 2019. Vórtices Ciclônicos de Altos Níveis nas Cercanias do Nordeste do Brasil: Climatologia e Análise da Vorticidade Potencial Isentrópica. Anuário do Instituto de Geociências, 42(3): 568-585. DOI: http://dx.doi.org/10.11137/2019_3_568_585 Frank, W.M. 1977. The structure and energetics of the tropical cyclone I. Storm structure. Monthly Weather Review, 105(9): 1119-1135. DOI: https://doi.org/10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2 Frank, W.M. & Ritchie, E.A. 2001. Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Monthly weather review, 129(9): 2249-2269. DOI: https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2 Galvin, J.F.P. 2008. The weather and climate of the tropics: Part 7 - Tropical revolving storms. Weather, 63(11): 327-333. DOI: https://doi.org/10.1002/wea.252 Gan, M.A. & Rao, V.B. 1991. Surface cyclogenesis over South America. Monthly Weather Review, 119(5): 1293-1302. DOI: https://doi.org/10.1175/1520-0493(1991)119<1293:SCOSA>2.0.CO;2 Garbarini, E.M.; González, M.H. & Rolla, A.L. 2019. The influence of Atlantic High on seasonal rainfall in Argentina. International Journal of Climatology, 39: 4688- 4702. DOI: https://doi.org/10.1002/joc.6098 Garbarini, E.M.; González, M.H. & Rolla, A.L. 2020. Modulation of Seasonal Precipitation in Argentina by The South Pacific High. International Journal of Climatology, 41(S1): 1-3324. DOI: https://doi.org/10.1002/joc.6924 Garreaud, R.D. & Falvey, M. 2009. The coastal winds off western subtropical South America in future climate scenarios. International Journal of Climatology, 29(4): 543-554. DOI: https://doi.org/10.1002/joc.1716 Garreaud, R.D. & Rutllant, J. 2003. Coastal lows along the subtropical west coast of South America: Numerical simulation of a typical case. Monthly Weather Review, 131(5): 891-908. DOI: https://doi.org/10.1175/1520-0493(2003)131<0891:CLATSW>2.0.CO;2 Garreaud, R.D.; Rutllant, J.A. & Fuenzalida, H. 2002. Coastal lows along the subtropical west coast of South America: Mean structure and evolution. Monthly Weather Review, 130(1): 75-88. DOI:https://doi.org/10.1175/1520-0493(2002)130<0075:CLATSW>2.0.CO;2 Gozzo, L.F.; da Rocha, R.P.; Gimeno, L. & Drumond, A. 2017. Climatology and numerical case study of moisture sources associated with subtropical cyclogenesis over the southwestern Atlantic Ocean. Journal of Geophysical Research: Atmospheres, 122(11): 5636-5653. DOI: https://doi.org/10.1002/2016JD025764 Gozzo, L.F.; da Rocha, R.P.; Reboita, M.S. & Sugahara, S. 2014. Subtropical cyclones over the southwestern South Atlantic: Climatological aspects and case study. Journal of Climate, 27(22): 8543-8562. DOI: https://doi.org/10.1175/JCLI-D-14-00149.1 Gramcianinov, C.B. 2019. Changes in South Atlantic Cyclones due Climate Change. Programa de Pós-graduação em Meteorologia, Universidade de São Paulo, Tese de Doutorado, 224p. Gramcianinov, C.B.; Campos, R.M.; de Camargo, R.; Hodges, K.I.; Soares, C.G. & Silva Dias, P.L. 2020. Analysis of Atlantic extratropical storm tracks characteristics in 41 years of ERA5 and CFSR/CFSv2 databases. Ocean Engineering, 216: 108111. DOI: https://doi.org/10.1016/j.oceaneng.2020.108111 Gray, W.M. 1968. Global View of the origin of Tropical Disturbances and Storms. Monthly Weather Review, 96(10): 669-700. DOI: https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2 Grodsky, S.A. & Carton, J.A. 2003. The intertropical convergence zone in the South Atlantic and the equatorial cold tongue. Journal of Climate, 16(4): 723-733. DOI: https://doi.org/10.1175/1520-0442(2003)016<0723:TICZIT>2.0.CO;2 Guia, C. 2010. Análises das características sinóticas das trajetórias dos ciclones extratropicais que atuam na América do Sul e Vizinhanças. Programa de Pós-graduação em Meteorologia, Instituto Nacional de Pesquisas Espaciais, Tese de Doutorado, 105p. Guishard, M.P. 2006. Atlantic subtropical storms: Climatology and characteristics. Programa de Pós-graduação em Meteorologia, Pennsylvania State University, Tese de Doutorado, 158p. Hart, R.E. 2003. A cyclone phase space derived from thermal wind and thermal asymmetry. Monthly Weather Review, 131(4): 585-616. DOI: https://doi.org/10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2 Hastenrath, S. 2012. Climate dynamics of the tropics (Vol. 8). Dordrecht, Springer Science & Business Media, 488 p. He, J.; Gong, S.; Liu, H.; An, X.; Yu, Y.; Zhao, S.; Wu, L.; Song, C.; Xhou, C.; Wang, J.; Yin, C. & Yu, L. 2017. Influences of meteorological conditions on interannual variations of particulate matter pollution during winter in the Beijing–Tianjin–Hebei area. Journal of Meteorological Research, 31(6): 1062-1069. DOI: https://doi.org/10.1007/s13351-017-7039-9 Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; Abdalla, S.; Abellan, X.; Balsamo, G.; Bechtold, P.; Biavati, G.; Bidlot, J.; Bonavita, M.; de Chiara, G.; Dahlgren, P.; Dee, D.; Diamantakis, M.; Dragani, R.; Flemming, J.; Forbes, R.; Fuentes, M.; Geer, A.; Haimberger, L.; Healy, S.; Hogan, R.J.; Hólm, E.; Janisková, M.; Keeley, S.; Laloyaux, P.; Lopez, P.; Lupu, C.; Radnoti, G.; de Rosnay, P.; Rozum, I.; Vamborg, F.; Vilaume, S. & Thépaut, J.N. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999-2049. DOI: https://doi.org/10.1002/qj.3803 Holton, J.R. 1973. An introduction to dynamic meteorology. American Journal of Physics, 41(5): 752-754. Hoskins, B.J. & Hodges, K.I. 2005. A new perspective on Southern Hemisphere storm tracks. Journal of Climate, 18(20): 4108-4129. DOI: https://doi.org/10.1175/JCLI3570.1 Jin, Z.; You, Q.; Mu, M.; Sun, G. & Pepin, N. 2020. Fingerprints of anthropogenic influences on vegetation change over the Tibetan Plateau from an eco‐hydrological diagnosis. Geophysical Research Letters, 47(15):1-22. DOI: https://doi.org/10.1029/2020GL087842 Kepert, J.D. 2010. Tropical cyclone structure and dynamics. In: CHAN, J.C. & KEPERT, J.D. (Eds.). Global perspectives on Tropical cyclones: from science to mitigation. Editora World Scientific, p. 3-53. Kodama, Y. 1992. Large-scale common features of subtropical precipitation zones (the Baiu frontal zone, the SPCZ, and the SACZ) Part I: Characteristics of subtropical frontal zones. Journal of the Meteorological Society of Japan. Ser. II, 70(4): 813-836. DOI: https://doi.org/10.2151/jmsj1965.70.4_813 Kousky, V.E. 1988. Pentad outgoing longwave radiation climatology for the South American sector. Revista Brasileira de Meteorologia, 3(1): 217-231. Kuo, Y.H., Low-Nam, S. & Reed, R.J. 1991. Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic. Monthly Weather Review, 119(2): 457-476. DOI: https://doi.org/10.1175/1520-0493(1991)119<0457:EOSEFD>2.0.CO;2 Kuo, Y.H. & Reed, R.J. 1988. Numerical simulation of an explosively deepening cyclone in the eastern Pacific. Monthly Weather Review, 116(10): 2081-2105. DOI: https://doi.org/10.1175/1520-0493(1988)116<2081:NSOAED>2.0.CO;2 Lin, S.J. & Chou, K.H. 2020. The Lightning Distribution of Tropical Cyclones over the Western North Pacific. Monthly Weather Review, 148(11): 4415-4434. DOI: https://doi.org/10.1175/MWR-D-19-0327.1 Marengo, J.A.; Alves, L.M.; Ambrizzi, T.; Young, A.; Barreto, N.J. & Ramos, A.M. 2020. Trends in extreme rainfall and hydrogeometeorological disasters in the Metropolitan Area of São Paulo: a review. Annals of the New York Academy of Sciences, 1471(1): 1–16. DOI: https://doi.org/10.1111/nyas.14307 Marrafon, V.H.D.A. & Reboita, M.S. 2019. Revisitando a Equação do Desenvolvimento de Sutcliffe. Anuário do Instituto de Geociências, 41(3): 614-629. DOI: http://dx.doi.org/10.11137/2018_3_614_629 McTaggart-Cowan, R.; Bosart, L.F.; Davis, C.A.; Atallah, E.H.; Gyakum, J.R. & Emanuel, K.A. 2006. Analysis of Hurricane Catarina (2004). Monthly Weather Review, 134: 3029–3053. DOI: https://doi.org/10.1175/MWR3330.1 McTaggart-Cowan, R., Davies, E.L., Fairman, J.G., Galarneau, T.J. & Schultz, D.M. 2015. Revisiting the 26.5°C Sea Surface Temperature Threshold for Tropical Cyclone Development. Bulletin of the American Meteorological Society, 96: 1929–1943. DOI: https://doi.org/10.1175/BAMS-D-13-00254.1 McTaggart-Cowan, R.; Galarneau Jr, T.J.; Bosart, L.F.; Moore, R.W. & Martius, O. 2013. A global climatology of baroclinically influenced tropical cyclogenesis. Monthly Weather Review, 141(6): 1963-1989. DOI: https://doi.org/10.1175/MWR-D-12-00186.1 Mendonça, F. & Danni-Oliveira, I.M. 2017. Climatologia: noções básicas e climas do Brasil. São Paulo, Oficina de textos, 206 p. Mogil, H.M. 2007. Extreme weather: Understanding the science of hurricanes, tornadoes, floods, heat waves, snow storms, global warming and other atmospheric disturbances. Nova York, Black Dog & Leventhal, 304 p. NOAA. 2018. Rare Subtropical Storm off the Coast of Chile. Disponível em: <https://www.nesdis.noaa.gov/content/rare-subtropical-storm-coast-chile> Acesso em: 12 out. 2020. Nóbrega, R.S. & Santiago, G.A.C.F. 2014. Tendência de temperatura na superfície do mar nos oceanos Atlântico e Pacífico e variabilidade de precipitação em Pernambuco. Mercator (Fortaleza), 13(1): 107-118. DOI: https://doi.org/10.4215/RM2014.1301.0008 Nuss, W.A. & Anthes, R.A. 1987. A numerical investigation of low-level processes in rapid cyclogenesis. Monthly Weather Review, 115(11): 2728-2743. DOI: https://doi.org/10.1175/1520-0493(1987)115<2728:ANIOLL>2.0.CO;2 Palmén, E.H. 1956. A review of knowledge on the formation and development of tropical cyclones. In: TROPICAL CYCLONE SYMPOSIUM, 1956. Proceedings, Brisbane, Australia, Bureau of Meteorology, p. 213–231. Pezza, A.B. & Simmonds, I. 2005. The first South Atlantic hurricane: Unprecedented locking, low shear and climate change. Geophysical Research Letters, 32(15): 1-5. DOI: https://doi.org/10.1029/2005GL023390 Piva, E.; Moscati, M.C.D.L. & Gan, M.A. 2008. Papel dos fluxos de calor latente e sensível em superfície associado a um caso de ciclogênese na costa leste da América do Sul. Revista Brasileira de Meteorologia, 23(4): 450-476. DOI: https://doi.org/10.1590/S0102-77862008000400006 Rahman, M.S. & Islam, A.R.M.T. 2019. Are precipitation concentration and intensity changing in Bangladesh overtimes? Analysis of the possible causes of changes in precipitation systems. Science of The Total Environment, 690: 370-387. DOI: https://doi.org/10.1016/j.scitotenv.2019.06.529 Reboita, M.S. 2008. Ciclones Extratropicais sobre o Atlântico Sul: Simulação Climática e Experimentos de Sensibilidade. 2008. Programa de Pós-graduação em Meteorologia, Universidade de São Paulo, Tese de Doutorado, 360p. Reboita, M.S.; da Rocha, R.P.; Ambrizzi, T. & Sugahara, S. 2010a. South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Climate Dynamics, 35(7): 1331-1347. DOI: https://10.1007/s00382-009-0668-7 Reboita, M.S.; da Rocha, R.P.; Ambrizzi, T. & Caetano, E. 2010b. An assessment of the latent and sensible heat flux on the simulated regional climate over Southwestern South Atlantic Ocean. Climate Dynamics, 34(6): 873-889. DOI: https://10.1007/s00382-009-0681-x Reboita, M.S.; Gan, M.A.; Rocha, R.P.D. & Ambrizzi, T. 2010c. Regimes de precipitação na América do Sul: uma revisão bibliográfica. Revista Brasileira de Meteorologia, 25(2): 185-204. DOI: http://dx.doi.org/10.1590/S0102-77862010000200004 Reboita, M.S.; Krusche, N.; Ambrizzi, T. & da Rocha, R.P.D. 2012. Entendendo o Tempo e o Clima na América do Sul. Terrae Didatica, 8(1): 34-50. Reboita, M.S.; da Rocha, R.P.; Ambrizzi, T. & Gouveia, C.D. 2015. Trend and teleconnection patterns in the climatology of extratropical cyclones over the Southern Hemisphere. Climate Dynamics, 45(7-8): 1929-1944. DOI: https://doi.org/10.1007/s00382-014-2447-3 Reboita, M.S.; Rodrigues, M.; Armando, R.; Freitas, C.; Martins, D. & Miller, G. 2016. Causas da semi-aridez do sertão nordestino. Revista Brasileira de Climatologia, 19: 2237-8642. DOI: http://dx.doi.org/10.5380/abclima.v19i0.42091 Reboita, M.S.; Gan, M.A.; da Rocha, R.P.D. & Custódio, I.S. 2017a. Ciclones em Superfície nas Latitudes Austrais: Parte I-Revisão Bibliográfica. Revista Brasileira de Meteorologia, 32(2): 171-186. DOI: http://dx.doi.org/10.1590/0102-77863220010 Reboita, M.S.; Gan, M.A.; da Rocha, R.P. & Custódio, I.S. 2017b. Ciclones em Superfície nas Latitudes Austrais: Parte II Estudo de Casos. Revista Brasileira de Meteorologia, 32(4): 509-542. DOI: http://dx.doi.org/10.1590/0102-7786324002 Reboita, M.S.; da Rocha, R.P. & Oliveira, D.M.D. 2019a. Key Features and adverse weather of the named subtropical cyclones over the Southwestern South Atlantic Ocean. Atmosphere, 10(1): 6. DOI: https://doi.org/10.3390/atmos10010006 Reboita, M.S.; Ambrizzi, T.; Silva, B.A.; Pinheiro, R.F. & da Rocha, R.P. 2019b. The South Atlantic subtropical anticyclone: present and future climate. Frontiers in Earth Science, 7(8): 1-15. DOI: https://doi.org/10.3389/feart.2019.00008 Reboita, M.S.; Oliveira, D.M.; da Rocha, R.P. & Dutra, L.M.M. 2019c. Subtropical cyclone Anita's potential to tropical transition under warmer sea surface temperature scenarios. Geophysical Research Letters, 46(14): 8484-8489. DOI: https://doi.org/10.1029/2019GL083415 Reboita M.S.; Crespo N.M.; Dutra L.M.M.; Silva B.A.; Capucin, B.C & da Rocha, R.P. 2020. Iba: the First Pure Tropical Cyclogenesis over the Western South Atlantic Ocean. Journal of Geophysical Research: Atmospheres, 126(1): 1-20. DOI: https://10.1029/2020JD033431 Rogers, E. & Bosart, L.F. 1991. A diagnostic study of two intense oceanic cyclones. Monthly Weather Review, 119(4): 965-996. DOI: https://doi.org/10.1175/1520-0493(1991)119<0965:ADSOTI>2.0.CO;2 Santos, D.F. & Reboita, M.S. 2018. Jatos de baixos níveis a leste dos andes: comparação entre duas reanálises. Revista Brasileira de Climatologia, 22: 423-445. DOI: http://dx.doi.org/10.5380/abclima.v22i0.47595 Santos, T.C.D.; Reboita, M.S. & Carvalho, V.S.B. 2018. Investigação da Relação entre Variáveis Atmosféricas e a Concentração de MP10 e O3 no estado de São Paulo. Revista Brasileira de Meteorologia, 33(4): 631-645. DOI: https://doi.org/10.1590/0102-7786334006 Seluchi, M.E. & Garreaud, R.D. 2012. Campos médios e processos físicos associados ao ciclo de vida da Baixa do Chaco. Revista Brasileira de Meteorologia, 27(4): 447-462. DOI: http://dx.doi.org/10.1590/S0102-77862012000400008 Seluchi, M.E. & Saulo, A.C. 2012. Baixa do Noroeste Argentino e Baixa do Chaco: características, diferenças e semelhanças. Revista Brasileira de Meteorologia, 27(1): 49-60. DOI: https://doi.org/10.1590/S0102-77862012000100006 Shapiro, M.A. & Keyser, D. 1990. Fronts, jet streams and the tropopause. In: NEWTON, C.W. & HOLOPAINEN, E.O. (Eds). Extratropical cyclones, American Meteorological Society, p. 167-191. Silva, J.P.R.; Reboita, M.S. & Escobar, G.C.J. 2019. Caracterização da Zona de Convergência do Atlântico Sul em Campos Atmosféricos recentes. Revista Brasileira de Climatologia, 25: 355-37. DOI: http://dx.doi.org/10.5380/abclima.v25i0.64101 Solman, S.A. & Blázquez, J. 2019. Multiscale precipitation variability over South America: Analysis of the added value of CORDEX RCM simulations. Climate Dynamics, 53(3): 1547-1565. DOI: https://doi.org/10.1007/s00382-019-04689-1 Song, Y.; Wang, L.; Lei, X. & Wang, X. 2015. Tropical cyclone genesis potential index over the western North Pacific simulated by CMIP5 models. Advances in Atmospheric Sciences, 32(11): 1539-1550. DOI: https://doi.org/10.1007/s00376-015-4162-3 Tang, B.H.; Fang, J.; Betley, A.; Kilroy, G.; Nakano, M.; Park, M.S.; Rajasree, V.P.M.; Wang, Z.; Wing, A.A. & Wu, L. 2020. Recent advances in research on tropical cyclogenesis. Tropical Cyclone Research and Review, 9: 87-105. DOI: https://doi.org/10.1016/j.tcrr.2020.04.004 Teodoro, T.A.; Reboita, M.S. & Escobar, G.C.J. 2019. Caracterização da Banda Dupla da Zona de Convergência Intertropical (ZCIT) no Oceano Atlântico. Anuário do Instituto de Geociências, 42(2): 282-298. DOI: http://dx.doi.org/10.11137/2019_2_282_298 The Weather Channel. 2018. Extremely Rare Southeast Pacific Subtropical Cyclone Forms Off the Chilean Coast. Disponível em: <https://weather.com s-1torms/hurricane/news/2018-05-08- subtropical-cyclone-chile> Acesso em: 14 out. 2020. Tian, F.; Zhou, T. & Zhang, L. 2013. Tropical cyclone genesis potential index over the western North Pacific simulated by LASG/IAP AGCM. Acta Meteorologica Sinica, 27(1): 50-62. DOI: https://10.1007/s13351-013 Tory, K.J. & Frank, W.M. 2010. Tropical cyclone formation. Global perspectives on tropical cyclones: From science to mitigation, 55-91. DOI: https://doi.org/10.1142/9789814293488_0002 Uccellini, L.W.; Petersen, R.A.; Kocin, P.J.; Brill, K.F. & Tuccillo, J.J. 1987. Synergistic interactions between an upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone. Monthly Weather Review, 115(10): 2227-2261. DOI: https://doi.org/10.1175/1520-0493(1987)115<2227:SIBAUL>2.0.CO;2 Vianello, R. & Alves, A. 2012. Meteorologia básica e aplicações. Viçosa, Editora UFV, 460 p. Wallace, J.M. & Hobbs, P.V. 2006. Atmospheric science: an introductory survey (Vol. 92). Londres, Elsevier, 473 p. Walsh, K.; Lavender, S.; Scoccimarro, E. & Murakami, H. 2013. Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models. Climate Dynamics, 40: 585–599. DOI: https://10.1007/s00382-012-1298-z Wang, B. & Moon, J.Y. 2017. An anomalous genesis potential index for MJO modulation of tropical cyclones. Journal of Climate, 30(11): 4021-4035. DOI: https://doi.org/10.1175/JCLI-D-16-0749.1 Yang, H.; Lohmann, G.; Lu, J.; Gowan, E.J.; Shi, X.; Liu, J. & Wang, Q. 2020. Tropical expansion driven by poleward advancing midlatitude meridional temperature gradients. Journal of Geophysical Research: Atmospheres, 125(16): 1-18. DOI: https://doi.org/10.1029/2020JD033158 Ynoue, R.Y.; Reboita, M.S.; Ambrizzi, T. & da Silva, G.A. 2017. Meteorologia: noções básicas. São Paulo, Oficina de Textos, 182 p. Zehr, R.M. 1992. Tropical cyclogenesis in the western North Pacific. NOAA Tech, Repository NESDIS 61, 181 p. Zhang, M.; Zhou, L.; Chen, D. & Wang, C. 2016. A genesis potential index for W estern N orth P acific tropical cyclones by using oceanic parameters. Journal of Geophysical Research: Oceans, 121(9): 7176-7191. DOI: https://doi.org/10.1002/2016JC011851 Zhang, Y.; Wang, H.; Sun, J. & Drange, H. 2010. Changes in the tropical cyclone genesis potential index over the western North Pacific in the SRES A2 scenario. Advances in Atmospheric Sciences, 27(6): 1246-1258. DOI: https://doi.org/10.1007/s00376-010-9096-1 Zhou, J. & Lau, K.M. 1998. Does a monsoon climate exist over South America? Journal of climate, 11(5): 1020-1040. DOI: https://doi.org/10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Anuário do Instituto de Geociências http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Anuário do Instituto de Geociências http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro |
publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro |
dc.source.none.fl_str_mv |
Anuário do Instituto de Geociências; Vol 44 (2021) Anuário do Instituto de Geociências; Vol 44 (2021) 1982-3908 0101-9759 reponame:Anuário do Instituto de Geociências (Online) instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
instacron_str |
UFRJ |
institution |
UFRJ |
reponame_str |
Anuário do Instituto de Geociências (Online) |
collection |
Anuário do Instituto de Geociências (Online) |
repository.name.fl_str_mv |
Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ) |
repository.mail.fl_str_mv |
anuario@igeo.ufrj.br|| |
_version_ |
1797053538007777280 |