Multivariate Statistics Applied to the Identification of Compositional Control Parameters for Groundwater
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anuário do Instituto de Geociências (Online) |
Texto Completo: | https://revistas.ufrj.br/index.php/aigeo/article/view/49797 |
Resumo: | The objective of the present study was to identify the most influent parameters in the composition of groundwater in the municipality of Icapuí, Ceará - Brazil, seeking correlations with the composition of the percolating aquifer formations that can be associated with the sources of these components. For this purpose, multivariate statistical techniques were applied by means of a Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). The PCA allowed a reduction of physicochemical parameters and determined the two components responsible for approximately 86% of total variance in the data for both sampling periods (rainy and dry). The first component is represented by variables that indicate natural rock weathering processes, and the second comprises seasonality and pollution indicators. Samples were also correlated through HCA according to compositional similarities, which were associated with possible natural or human sources. |
id |
UFRJ-21_69088c4918946a7cd2b09e44b687be94 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/49797 |
network_acronym_str |
UFRJ-21 |
network_name_str |
Anuário do Instituto de Geociências (Online) |
repository_id_str |
|
spelling |
Multivariate Statistics Applied to the Identification of Compositional Control Parameters for GroundwaterFactorial analysisPrincipal component analysisHierarchical clusterThe objective of the present study was to identify the most influent parameters in the composition of groundwater in the municipality of Icapuí, Ceará - Brazil, seeking correlations with the composition of the percolating aquifer formations that can be associated with the sources of these components. For this purpose, multivariate statistical techniques were applied by means of a Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). The PCA allowed a reduction of physicochemical parameters and determined the two components responsible for approximately 86% of total variance in the data for both sampling periods (rainy and dry). The first component is represented by variables that indicate natural rock weathering processes, and the second comprises seasonality and pollution indicators. Samples were also correlated through HCA according to compositional similarities, which were associated with possible natural or human sources.Universidade Federal do Rio de Janeiro2024-04-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufrj.br/index.php/aigeo/article/view/4979710.11137/1982-3908_2024_47_49797Anuário do Instituto de Geociências; v. 47 (2024): Anuário do Instituto de GeociênciasAnuário do Instituto de Geociências; Vol. 47 (2024): Anuário do Instituto de Geociências1982-39080101-9759reponame:Anuário do Instituto de Geociências (Online)instname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJenghttps://revistas.ufrj.br/index.php/aigeo/article/view/49797/40474Copyright (c) 2024 Anuário do Instituto de Geociênciashttps://creativecommons.org/licenses/by/4.0/deed.eninfo:eu-repo/semantics/openAccessde Araújo, Karen VendraminiFreire, George Satander SáCavalcante, Itabaraci Nazarenode Oliveira, Rafael MotaFreire, Diolande Ferreira GomesGomes, Maria da Conceição RabeloPeixoto, Filipe da Silva2024-04-03T15:59:24Zoai:ojs.pkp.sfu.ca:article/49797Revistahttps://revistas.ufrj.br/index.php/aigeo/indexPUBhttps://revistas.ufrj.br/index.php/aigeo/oaianuario@igeo.ufrj.br||1982-39080101-9759opendoar:2024-04-03T15:59:24Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)false |
dc.title.none.fl_str_mv |
Multivariate Statistics Applied to the Identification of Compositional Control Parameters for Groundwater |
title |
Multivariate Statistics Applied to the Identification of Compositional Control Parameters for Groundwater |
spellingShingle |
Multivariate Statistics Applied to the Identification of Compositional Control Parameters for Groundwater de Araújo, Karen Vendramini Factorial analysis Principal component analysis Hierarchical cluster |
title_short |
Multivariate Statistics Applied to the Identification of Compositional Control Parameters for Groundwater |
title_full |
Multivariate Statistics Applied to the Identification of Compositional Control Parameters for Groundwater |
title_fullStr |
Multivariate Statistics Applied to the Identification of Compositional Control Parameters for Groundwater |
title_full_unstemmed |
Multivariate Statistics Applied to the Identification of Compositional Control Parameters for Groundwater |
title_sort |
Multivariate Statistics Applied to the Identification of Compositional Control Parameters for Groundwater |
author |
de Araújo, Karen Vendramini |
author_facet |
de Araújo, Karen Vendramini Freire, George Satander Sá Cavalcante, Itabaraci Nazareno de Oliveira, Rafael Mota Freire, Diolande Ferreira Gomes Gomes, Maria da Conceição Rabelo Peixoto, Filipe da Silva |
author_role |
author |
author2 |
Freire, George Satander Sá Cavalcante, Itabaraci Nazareno de Oliveira, Rafael Mota Freire, Diolande Ferreira Gomes Gomes, Maria da Conceição Rabelo Peixoto, Filipe da Silva |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
de Araújo, Karen Vendramini Freire, George Satander Sá Cavalcante, Itabaraci Nazareno de Oliveira, Rafael Mota Freire, Diolande Ferreira Gomes Gomes, Maria da Conceição Rabelo Peixoto, Filipe da Silva |
dc.subject.por.fl_str_mv |
Factorial analysis Principal component analysis Hierarchical cluster |
topic |
Factorial analysis Principal component analysis Hierarchical cluster |
description |
The objective of the present study was to identify the most influent parameters in the composition of groundwater in the municipality of Icapuí, Ceará - Brazil, seeking correlations with the composition of the percolating aquifer formations that can be associated with the sources of these components. For this purpose, multivariate statistical techniques were applied by means of a Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). The PCA allowed a reduction of physicochemical parameters and determined the two components responsible for approximately 86% of total variance in the data for both sampling periods (rainy and dry). The first component is represented by variables that indicate natural rock weathering processes, and the second comprises seasonality and pollution indicators. Samples were also correlated through HCA according to compositional similarities, which were associated with possible natural or human sources. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04-03 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufrj.br/index.php/aigeo/article/view/49797 10.11137/1982-3908_2024_47_49797 |
url |
https://revistas.ufrj.br/index.php/aigeo/article/view/49797 |
identifier_str_mv |
10.11137/1982-3908_2024_47_49797 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.ufrj.br/index.php/aigeo/article/view/49797/40474 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2024 Anuário do Instituto de Geociências https://creativecommons.org/licenses/by/4.0/deed.en info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2024 Anuário do Instituto de Geociências https://creativecommons.org/licenses/by/4.0/deed.en |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro |
publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro |
dc.source.none.fl_str_mv |
Anuário do Instituto de Geociências; v. 47 (2024): Anuário do Instituto de Geociências Anuário do Instituto de Geociências; Vol. 47 (2024): Anuário do Instituto de Geociências 1982-3908 0101-9759 reponame:Anuário do Instituto de Geociências (Online) instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
instacron_str |
UFRJ |
institution |
UFRJ |
reponame_str |
Anuário do Instituto de Geociências (Online) |
collection |
Anuário do Instituto de Geociências (Online) |
repository.name.fl_str_mv |
Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ) |
repository.mail.fl_str_mv |
anuario@igeo.ufrj.br|| |
_version_ |
1797053535687278592 |