Selection and grouping of indicators of water quality using Multivariate Statistics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Semina. Ciências Agrárias (Online) |
Texto Completo: | https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/10862 |
Resumo: | Multivariate statistics techniques (Principal Component Analysis and Cluster Analysis) were employed to select the most important parameters that explain water quality variability at a rural watershed in the state of Espírito Santo (Brazil). In addition to group the waters studied for the similarity of features selected to verify the effect of type of soil cover (agriculture, livestock, forest and urban), water resource (surface and underground) and sampling period (rainy and dry seasons). Nineteen physico-chemical parameters of water quality were analyzed: pH, electrical conductivity, total solids, total dissolved solids, total suspended solids, turbidity, biochemical oxygen demand (BOD), ammoniacal nitrogen, nitrate, nitrite, total phosphorous, Ca, Mg, Fe, Na, K, Zn, Cu and total coliform. Application of Principal Component Analysis reduced the 19 parameters to three components that explained 87.53% of the total variance of data set. Water quality parameters that best explained variability of data were: electrical conductivity, total solids, total dissolved solids, turbidity, BOD, nitrate, Ca, Mg, and Na. Application of Cluster Analysis showed four different groups of water quality that differed in concentration of physicochemical characteristics and the type of water resource study, since the collection periods and the type of soil cover did not influence the segregation of groups formed. |
id |
UEL-11_1cfaf4aa39274e385677e7a8fce02514 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/10862 |
network_acronym_str |
UEL-11 |
network_name_str |
Semina. Ciências Agrárias (Online) |
repository_id_str |
|
spelling |
Selection and grouping of indicators of water quality using Multivariate StatisticsSeleção e agrupamento de indicadores da qualidade de águas utilizando Estatística MultivariadaPrincipal component analysisCluster analysisWater quality.Análise de componentes principaisAnálise de agrupamentoQualidade da água.Ciências agráriasMultivariate statistics techniques (Principal Component Analysis and Cluster Analysis) were employed to select the most important parameters that explain water quality variability at a rural watershed in the state of Espírito Santo (Brazil). In addition to group the waters studied for the similarity of features selected to verify the effect of type of soil cover (agriculture, livestock, forest and urban), water resource (surface and underground) and sampling period (rainy and dry seasons). Nineteen physico-chemical parameters of water quality were analyzed: pH, electrical conductivity, total solids, total dissolved solids, total suspended solids, turbidity, biochemical oxygen demand (BOD), ammoniacal nitrogen, nitrate, nitrite, total phosphorous, Ca, Mg, Fe, Na, K, Zn, Cu and total coliform. Application of Principal Component Analysis reduced the 19 parameters to three components that explained 87.53% of the total variance of data set. Water quality parameters that best explained variability of data were: electrical conductivity, total solids, total dissolved solids, turbidity, BOD, nitrate, Ca, Mg, and Na. Application of Cluster Analysis showed four different groups of water quality that differed in concentration of physicochemical characteristics and the type of water resource study, since the collection periods and the type of soil cover did not influence the segregation of groups formed.No presente trabalho empregaram-se técnicas de Estatística Multivariada (Análise de Componentes Principais e Análise de Agrupamento Hierárquico) com o objetivo de selecionar as características físico-químicas mais importantes para explicar a variabilidade da qualidade das águas de uma sub-bacia hidrográfica rural no Sul do Estado do Espírito Santo, além de agrupar as águas estudadas quanto à similaridade das características selecionadas para verificar o efeito do tipo de cobertura do solo (agrícola, pecuário, florestal e urbano), de recurso hídrico (subterrâneo e superficial) e período de coleta (chuva e estiagem). A análise físico-química das águas foi feita por meio da determinação de pH, condutividade elétrica, sólidos totais, sólidos dissolvidos, sólidos suspensos, turbidez, demanda bioquímica de oxigênio (DBO), nitrogênio amoniacal, nitrato, nitrito, fósforo total, Ca, Mg, Fe, Na, K, Zn, Cu e coliformes totais. A Análise de Componentes Principais promoveu a redução de dezenove parâmetros de qualidade em três componentes que explicaram 87,53% da variância total. As características mais representativas da variabilidade da qualidade das águas estudadas foram: condutividade elétrica, sólidos totais, sólidos dissolvidos, turbidez, DBO, nitrato, Ca, Mg e Na. Na Análise de Agrupamento Hierárquico foram formados quatro grupos distintos de qualidade da água que diferiram quanto à concentração das características físico-químicas e quanto ao tipo de recurso hídrico estudado, já os períodos de coleta e o tipo de cobertura do solo não influenciaram na segregação dos grupos formados.UEL2013-10-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPesquisa experimentalapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/1086210.5433/1679-0359.2013v34n5p2025Semina: Ciências Agrárias; Vol. 34 No. 5 (2013); 2025-2036Semina: Ciências Agrárias; v. 34 n. 5 (2013); 2025-20361679-03591676-546Xreponame:Semina. Ciências Agrárias (Online)instname:Universidade Estadual de Londrina (UEL)instacron:UELporhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/10862/pdf_4Bertossi, Ana Paula AlmeidaMenezes, João Paulo Cunha deCecílio, Roberto AvelinoGarcia, Giovanni de OliveiraNeves, Mirna Aparecidainfo:eu-repo/semantics/openAccess2015-11-19T18:36:23Zoai:ojs.pkp.sfu.ca:article/10862Revistahttp://www.uel.br/revistas/uel/index.php/semagrariasPUBhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/oaisemina.agrarias@uel.br1679-03591676-546Xopendoar:2015-11-19T18:36:23Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)false |
dc.title.none.fl_str_mv |
Selection and grouping of indicators of water quality using Multivariate Statistics Seleção e agrupamento de indicadores da qualidade de águas utilizando Estatística Multivariada |
title |
Selection and grouping of indicators of water quality using Multivariate Statistics |
spellingShingle |
Selection and grouping of indicators of water quality using Multivariate Statistics Bertossi, Ana Paula Almeida Principal component analysis Cluster analysis Water quality. Análise de componentes principais Análise de agrupamento Qualidade da água. Ciências agrárias |
title_short |
Selection and grouping of indicators of water quality using Multivariate Statistics |
title_full |
Selection and grouping of indicators of water quality using Multivariate Statistics |
title_fullStr |
Selection and grouping of indicators of water quality using Multivariate Statistics |
title_full_unstemmed |
Selection and grouping of indicators of water quality using Multivariate Statistics |
title_sort |
Selection and grouping of indicators of water quality using Multivariate Statistics |
author |
Bertossi, Ana Paula Almeida |
author_facet |
Bertossi, Ana Paula Almeida Menezes, João Paulo Cunha de Cecílio, Roberto Avelino Garcia, Giovanni de Oliveira Neves, Mirna Aparecida |
author_role |
author |
author2 |
Menezes, João Paulo Cunha de Cecílio, Roberto Avelino Garcia, Giovanni de Oliveira Neves, Mirna Aparecida |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Bertossi, Ana Paula Almeida Menezes, João Paulo Cunha de Cecílio, Roberto Avelino Garcia, Giovanni de Oliveira Neves, Mirna Aparecida |
dc.subject.por.fl_str_mv |
Principal component analysis Cluster analysis Water quality. Análise de componentes principais Análise de agrupamento Qualidade da água. Ciências agrárias |
topic |
Principal component analysis Cluster analysis Water quality. Análise de componentes principais Análise de agrupamento Qualidade da água. Ciências agrárias |
description |
Multivariate statistics techniques (Principal Component Analysis and Cluster Analysis) were employed to select the most important parameters that explain water quality variability at a rural watershed in the state of Espírito Santo (Brazil). In addition to group the waters studied for the similarity of features selected to verify the effect of type of soil cover (agriculture, livestock, forest and urban), water resource (surface and underground) and sampling period (rainy and dry seasons). Nineteen physico-chemical parameters of water quality were analyzed: pH, electrical conductivity, total solids, total dissolved solids, total suspended solids, turbidity, biochemical oxygen demand (BOD), ammoniacal nitrogen, nitrate, nitrite, total phosphorous, Ca, Mg, Fe, Na, K, Zn, Cu and total coliform. Application of Principal Component Analysis reduced the 19 parameters to three components that explained 87.53% of the total variance of data set. Water quality parameters that best explained variability of data were: electrical conductivity, total solids, total dissolved solids, turbidity, BOD, nitrate, Ca, Mg, and Na. Application of Cluster Analysis showed four different groups of water quality that differed in concentration of physicochemical characteristics and the type of water resource study, since the collection periods and the type of soil cover did not influence the segregation of groups formed. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-10-17 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Pesquisa experimental |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/10862 10.5433/1679-0359.2013v34n5p2025 |
url |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/10862 |
identifier_str_mv |
10.5433/1679-0359.2013v34n5p2025 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/10862/pdf_4 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
UEL |
publisher.none.fl_str_mv |
UEL |
dc.source.none.fl_str_mv |
Semina: Ciências Agrárias; Vol. 34 No. 5 (2013); 2025-2036 Semina: Ciências Agrárias; v. 34 n. 5 (2013); 2025-2036 1679-0359 1676-546X reponame:Semina. Ciências Agrárias (Online) instname:Universidade Estadual de Londrina (UEL) instacron:UEL |
instname_str |
Universidade Estadual de Londrina (UEL) |
instacron_str |
UEL |
institution |
UEL |
reponame_str |
Semina. Ciências Agrárias (Online) |
collection |
Semina. Ciências Agrárias (Online) |
repository.name.fl_str_mv |
Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL) |
repository.mail.fl_str_mv |
semina.agrarias@uel.br |
_version_ |
1799306066468536320 |