Partial Volume Prediction Through Nonlinear Mixed Modeling

Detalhes bibliográficos
Autor(a) principal: Nicoletti,Marcos Felipe
Data de Publicação: 2019
Outros Autores: Carvalho,Samuel de Pádua Chaves e, Machado,Sebastião do Amaral, Figueiredo Filho,Afonso, Oliveira,Gustavo Silva
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Floresta e Ambiente
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872019000400117
Resumo: ABSTRACT The objective of this study was to assess the prediction of partial volumes with nonlinear mixed modeling for Pinus taeda. The volume of 558 trees was measured. The four-parameter logistic model was used in its modified form for the nonlinear mixed approach and, for comparison, the 5th degree polynomial was used. In the mixed modeling, the random effects diameter, age and place were inserted. The statistical criteria used to assess the quality of the adjustment were the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), standard error of the estimate (Syx) and residual graphical analysis. Among the random effects analyzed, age obtained the best adjustment. However, to predict partial volumes, it was noticed that, regardless of the analyzed portion of the trunk, the 5th degree polynomial had the best estimates, with a mean standard error of 20.1% of the estimate compared to 51.8% of the logistic.
id UFRJ-3_01d584e3575aef5ef34962fae31dcd84
oai_identifier_str oai:scielo:S2179-80872019000400117
network_acronym_str UFRJ-3
network_name_str Floresta e Ambiente
repository_id_str
spelling Partial Volume Prediction Through Nonlinear Mixed Modelingforest biometricslogistic modeltaperABSTRACT The objective of this study was to assess the prediction of partial volumes with nonlinear mixed modeling for Pinus taeda. The volume of 558 trees was measured. The four-parameter logistic model was used in its modified form for the nonlinear mixed approach and, for comparison, the 5th degree polynomial was used. In the mixed modeling, the random effects diameter, age and place were inserted. The statistical criteria used to assess the quality of the adjustment were the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), standard error of the estimate (Syx) and residual graphical analysis. Among the random effects analyzed, age obtained the best adjustment. However, to predict partial volumes, it was noticed that, regardless of the analyzed portion of the trunk, the 5th degree polynomial had the best estimates, with a mean standard error of 20.1% of the estimate compared to 51.8% of the logistic.Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872019000400117Floresta e Ambiente v.26 n.4 2019reponame:Floresta e Ambienteinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ10.1590/2179-8087.032917info:eu-repo/semantics/openAccessNicoletti,Marcos FelipeCarvalho,Samuel de Pádua Chaves eMachado,Sebastião do AmaralFigueiredo Filho,AfonsoOliveira,Gustavo Silvaeng2019-11-05T00:00:00Zoai:scielo:S2179-80872019000400117Revistahttps://www.floram.org/PUBhttps://old.scielo.br/oai/scielo-oai.phpfloramjournal@gmail.com||floram@ufrrj.br||2179-80871415-0980opendoar:2019-11-05T00:00Floresta e Ambiente - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Partial Volume Prediction Through Nonlinear Mixed Modeling
title Partial Volume Prediction Through Nonlinear Mixed Modeling
spellingShingle Partial Volume Prediction Through Nonlinear Mixed Modeling
Nicoletti,Marcos Felipe
forest biometrics
logistic model
taper
title_short Partial Volume Prediction Through Nonlinear Mixed Modeling
title_full Partial Volume Prediction Through Nonlinear Mixed Modeling
title_fullStr Partial Volume Prediction Through Nonlinear Mixed Modeling
title_full_unstemmed Partial Volume Prediction Through Nonlinear Mixed Modeling
title_sort Partial Volume Prediction Through Nonlinear Mixed Modeling
author Nicoletti,Marcos Felipe
author_facet Nicoletti,Marcos Felipe
Carvalho,Samuel de Pádua Chaves e
Machado,Sebastião do Amaral
Figueiredo Filho,Afonso
Oliveira,Gustavo Silva
author_role author
author2 Carvalho,Samuel de Pádua Chaves e
Machado,Sebastião do Amaral
Figueiredo Filho,Afonso
Oliveira,Gustavo Silva
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Nicoletti,Marcos Felipe
Carvalho,Samuel de Pádua Chaves e
Machado,Sebastião do Amaral
Figueiredo Filho,Afonso
Oliveira,Gustavo Silva
dc.subject.por.fl_str_mv forest biometrics
logistic model
taper
topic forest biometrics
logistic model
taper
description ABSTRACT The objective of this study was to assess the prediction of partial volumes with nonlinear mixed modeling for Pinus taeda. The volume of 558 trees was measured. The four-parameter logistic model was used in its modified form for the nonlinear mixed approach and, for comparison, the 5th degree polynomial was used. In the mixed modeling, the random effects diameter, age and place were inserted. The statistical criteria used to assess the quality of the adjustment were the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), standard error of the estimate (Syx) and residual graphical analysis. Among the random effects analyzed, age obtained the best adjustment. However, to predict partial volumes, it was noticed that, regardless of the analyzed portion of the trunk, the 5th degree polynomial had the best estimates, with a mean standard error of 20.1% of the estimate compared to 51.8% of the logistic.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872019000400117
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872019000400117
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/2179-8087.032917
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro
publisher.none.fl_str_mv Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv Floresta e Ambiente v.26 n.4 2019
reponame:Floresta e Ambiente
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Floresta e Ambiente
collection Floresta e Ambiente
repository.name.fl_str_mv Floresta e Ambiente - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv floramjournal@gmail.com||floram@ufrrj.br||
_version_ 1750128142895284224