Alternatives to Growth and Yield Prognosis for Pinus caribaea var. caribaea Barrett & Golfari
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Floresta e Ambiente |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872019000400135 |
Resumo: | ABSTRACT The objective of this study was to obtain regression equations and artificial neural networks (ANNs) for prediction and prognosis of the yield of Pinus caribaea var. caribaea Barrett & Golfari. The data used for modeling comes from measuring the variables diameter at breast height (DBH) and total height (Ht) in 550 temporary plots and 14 circular permanent plots with 500 m2 in Pinus caribaea var. caribaea plantations, aged between 3 and 41 years old. In growth prediction, the results indicated Schumacher model as the best fit to the data. On prognosis, the modified Buckman system was better than Clutter’s. ANNs presented a similar performance to the Buckman model in volume prognosis, however these were superior for basal area prognosis. |
id |
UFRJ-3_ae7825ac26f52d0577b4e27e028c2041 |
---|---|
oai_identifier_str |
oai:scielo:S2179-80872019000400135 |
network_acronym_str |
UFRJ-3 |
network_name_str |
Floresta e Ambiente |
repository_id_str |
|
spelling |
Alternatives to Growth and Yield Prognosis for Pinus caribaea var. caribaea Barrett & Golfariplantationsnonlinear regressionartificial neural networksABSTRACT The objective of this study was to obtain regression equations and artificial neural networks (ANNs) for prediction and prognosis of the yield of Pinus caribaea var. caribaea Barrett & Golfari. The data used for modeling comes from measuring the variables diameter at breast height (DBH) and total height (Ht) in 550 temporary plots and 14 circular permanent plots with 500 m2 in Pinus caribaea var. caribaea plantations, aged between 3 and 41 years old. In growth prediction, the results indicated Schumacher model as the best fit to the data. On prognosis, the modified Buckman system was better than Clutter’s. ANNs presented a similar performance to the Buckman model in volume prognosis, however these were superior for basal area prognosis.Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872019000400135Floresta e Ambiente v.26 n.4 2019reponame:Floresta e Ambienteinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ10.1590/2179-8087.038117info:eu-repo/semantics/openAccessGuera,Ouorou Ganni MarielSilva,José Antônio Aleixo daFerreira,Rinaldo Luiz CaracioloLazo,Daniel Alberto ÁlvarezMedel,Héctor Barreroeng2019-09-09T00:00:00Zoai:scielo:S2179-80872019000400135Revistahttps://www.floram.org/PUBhttps://old.scielo.br/oai/scielo-oai.phpfloramjournal@gmail.com||floram@ufrrj.br||2179-80871415-0980opendoar:2019-09-09T00:00Floresta e Ambiente - Universidade Federal do Rio de Janeiro (UFRJ)false |
dc.title.none.fl_str_mv |
Alternatives to Growth and Yield Prognosis for Pinus caribaea var. caribaea Barrett & Golfari |
title |
Alternatives to Growth and Yield Prognosis for Pinus caribaea var. caribaea Barrett & Golfari |
spellingShingle |
Alternatives to Growth and Yield Prognosis for Pinus caribaea var. caribaea Barrett & Golfari Guera,Ouorou Ganni Mariel plantations nonlinear regression artificial neural networks |
title_short |
Alternatives to Growth and Yield Prognosis for Pinus caribaea var. caribaea Barrett & Golfari |
title_full |
Alternatives to Growth and Yield Prognosis for Pinus caribaea var. caribaea Barrett & Golfari |
title_fullStr |
Alternatives to Growth and Yield Prognosis for Pinus caribaea var. caribaea Barrett & Golfari |
title_full_unstemmed |
Alternatives to Growth and Yield Prognosis for Pinus caribaea var. caribaea Barrett & Golfari |
title_sort |
Alternatives to Growth and Yield Prognosis for Pinus caribaea var. caribaea Barrett & Golfari |
author |
Guera,Ouorou Ganni Mariel |
author_facet |
Guera,Ouorou Ganni Mariel Silva,José Antônio Aleixo da Ferreira,Rinaldo Luiz Caraciolo Lazo,Daniel Alberto Álvarez Medel,Héctor Barrero |
author_role |
author |
author2 |
Silva,José Antônio Aleixo da Ferreira,Rinaldo Luiz Caraciolo Lazo,Daniel Alberto Álvarez Medel,Héctor Barrero |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Guera,Ouorou Ganni Mariel Silva,José Antônio Aleixo da Ferreira,Rinaldo Luiz Caraciolo Lazo,Daniel Alberto Álvarez Medel,Héctor Barrero |
dc.subject.por.fl_str_mv |
plantations nonlinear regression artificial neural networks |
topic |
plantations nonlinear regression artificial neural networks |
description |
ABSTRACT The objective of this study was to obtain regression equations and artificial neural networks (ANNs) for prediction and prognosis of the yield of Pinus caribaea var. caribaea Barrett & Golfari. The data used for modeling comes from measuring the variables diameter at breast height (DBH) and total height (Ht) in 550 temporary plots and 14 circular permanent plots with 500 m2 in Pinus caribaea var. caribaea plantations, aged between 3 and 41 years old. In growth prediction, the results indicated Schumacher model as the best fit to the data. On prognosis, the modified Buckman system was better than Clutter’s. ANNs presented a similar performance to the Buckman model in volume prognosis, however these were superior for basal area prognosis. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872019000400135 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872019000400135 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/2179-8087.038117 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro |
publisher.none.fl_str_mv |
Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro |
dc.source.none.fl_str_mv |
Floresta e Ambiente v.26 n.4 2019 reponame:Floresta e Ambiente instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
instacron_str |
UFRJ |
institution |
UFRJ |
reponame_str |
Floresta e Ambiente |
collection |
Floresta e Ambiente |
repository.name.fl_str_mv |
Floresta e Ambiente - Universidade Federal do Rio de Janeiro (UFRJ) |
repository.mail.fl_str_mv |
floramjournal@gmail.com||floram@ufrrj.br|| |
_version_ |
1750128142920450048 |