Nonlinear eigenvalue problem in the integral transforms solution of convection-diffusion with nonlinear boundary conditions

Detalhes bibliográficos
Autor(a) principal: Cotta, Renato Machado
Data de Publicação: 2015
Outros Autores: Naveira-Cotta, Carolina Palma, Knupp, Diego Campos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/8423
Resumo: The purpose of this paper is to propose the generalized integral transform technique (GITT) to the solution of convection-diffusion problems with nonlinear boundary conditions by employing the corresponding nonlinear eigenvalue problem in the construction of the expansion basis. The original nonlinear boundary condition coefficients in the problem formulation are all incorporated into the adopted eigenvalue problem, which may be itself integral transformed through a representative linear auxiliary problem, yielding a nonlinear algebraic eigenvalue problem for the associated eigenvalues and eigenvectors, to be solved along with the transformed ordinary differential system. The nonlinear eigenvalues computation may also be accomplished by rewriting the corresponding transcendental equation as an ordinary differential system for the eigenvalues, which is then simultaneously solved with the transformed potentials. An application on one-dimensional transient diffusion with nonlinear boundary condition coefficients is selected for illustrating some important computational aspects and the convergence behavior of the proposed eigenfunction expansions. For comparison purposes, an alternative solution with a linear eigenvalue problem basis is also presented and implemented. This novel approach can be further extended to various classes of nonlinear convection-diffusion problems, either already solved by the GITT with a linear coefficients basis, or new challenging applications with more involved nonlinearities.
id UFRJ_3acd6ca472d5566b556fe09090608584
oai_identifier_str oai:pantheon.ufrj.br:11422/8423
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling Nonlinear eigenvalue problem in the integral transforms solution of convection-diffusion with nonlinear boundary conditionsDiffusionHybrid methodsIntegral transformsEigenvalue problemNonlinear boundary conditionsNonlinear problemsCNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOSThe purpose of this paper is to propose the generalized integral transform technique (GITT) to the solution of convection-diffusion problems with nonlinear boundary conditions by employing the corresponding nonlinear eigenvalue problem in the construction of the expansion basis. The original nonlinear boundary condition coefficients in the problem formulation are all incorporated into the adopted eigenvalue problem, which may be itself integral transformed through a representative linear auxiliary problem, yielding a nonlinear algebraic eigenvalue problem for the associated eigenvalues and eigenvectors, to be solved along with the transformed ordinary differential system. The nonlinear eigenvalues computation may also be accomplished by rewriting the corresponding transcendental equation as an ordinary differential system for the eigenvalues, which is then simultaneously solved with the transformed potentials. An application on one-dimensional transient diffusion with nonlinear boundary condition coefficients is selected for illustrating some important computational aspects and the convergence behavior of the proposed eigenfunction expansions. For comparison purposes, an alternative solution with a linear eigenvalue problem basis is also presented and implemented. This novel approach can be further extended to various classes of nonlinear convection-diffusion problems, either already solved by the GITT with a linear coefficients basis, or new challenging applications with more involved nonlinearities.Indisponível.EmeraldBrasilNúcleo Interdisciplinar de Dinâmica dos Fluidos2019-06-11T17:03:34Z2023-12-21T03:06:00Z2015-10-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article0961-5539http://hdl.handle.net/11422/842310.1108/HFF-08-2015-0309engInternational Journal of Numerical Methods for Heat and Fluid FlowCotta, Renato MachadoNaveira-Cotta, Carolina PalmaKnupp, Diego Camposinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:06:00Zoai:pantheon.ufrj.br:11422/8423Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:06Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Nonlinear eigenvalue problem in the integral transforms solution of convection-diffusion with nonlinear boundary conditions
title Nonlinear eigenvalue problem in the integral transforms solution of convection-diffusion with nonlinear boundary conditions
spellingShingle Nonlinear eigenvalue problem in the integral transforms solution of convection-diffusion with nonlinear boundary conditions
Cotta, Renato Machado
Diffusion
Hybrid methods
Integral transforms
Eigenvalue problem
Nonlinear boundary conditions
Nonlinear problems
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
title_short Nonlinear eigenvalue problem in the integral transforms solution of convection-diffusion with nonlinear boundary conditions
title_full Nonlinear eigenvalue problem in the integral transforms solution of convection-diffusion with nonlinear boundary conditions
title_fullStr Nonlinear eigenvalue problem in the integral transforms solution of convection-diffusion with nonlinear boundary conditions
title_full_unstemmed Nonlinear eigenvalue problem in the integral transforms solution of convection-diffusion with nonlinear boundary conditions
title_sort Nonlinear eigenvalue problem in the integral transforms solution of convection-diffusion with nonlinear boundary conditions
author Cotta, Renato Machado
author_facet Cotta, Renato Machado
Naveira-Cotta, Carolina Palma
Knupp, Diego Campos
author_role author
author2 Naveira-Cotta, Carolina Palma
Knupp, Diego Campos
author2_role author
author
dc.contributor.author.fl_str_mv Cotta, Renato Machado
Naveira-Cotta, Carolina Palma
Knupp, Diego Campos
dc.subject.por.fl_str_mv Diffusion
Hybrid methods
Integral transforms
Eigenvalue problem
Nonlinear boundary conditions
Nonlinear problems
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
topic Diffusion
Hybrid methods
Integral transforms
Eigenvalue problem
Nonlinear boundary conditions
Nonlinear problems
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
description The purpose of this paper is to propose the generalized integral transform technique (GITT) to the solution of convection-diffusion problems with nonlinear boundary conditions by employing the corresponding nonlinear eigenvalue problem in the construction of the expansion basis. The original nonlinear boundary condition coefficients in the problem formulation are all incorporated into the adopted eigenvalue problem, which may be itself integral transformed through a representative linear auxiliary problem, yielding a nonlinear algebraic eigenvalue problem for the associated eigenvalues and eigenvectors, to be solved along with the transformed ordinary differential system. The nonlinear eigenvalues computation may also be accomplished by rewriting the corresponding transcendental equation as an ordinary differential system for the eigenvalues, which is then simultaneously solved with the transformed potentials. An application on one-dimensional transient diffusion with nonlinear boundary condition coefficients is selected for illustrating some important computational aspects and the convergence behavior of the proposed eigenfunction expansions. For comparison purposes, an alternative solution with a linear eigenvalue problem basis is also presented and implemented. This novel approach can be further extended to various classes of nonlinear convection-diffusion problems, either already solved by the GITT with a linear coefficients basis, or new challenging applications with more involved nonlinearities.
publishDate 2015
dc.date.none.fl_str_mv 2015-10-15
2019-06-11T17:03:34Z
2023-12-21T03:06:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 0961-5539
http://hdl.handle.net/11422/8423
10.1108/HFF-08-2015-0309
identifier_str_mv 0961-5539
10.1108/HFF-08-2015-0309
url http://hdl.handle.net/11422/8423
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal of Numerical Methods for Heat and Fluid Flow
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Emerald
Brasil
Núcleo Interdisciplinar de Dinâmica dos Fluidos
publisher.none.fl_str_mv Emerald
Brasil
Núcleo Interdisciplinar de Dinâmica dos Fluidos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv pantheon@sibi.ufrj.br
_version_ 1815455990764535808