Patterns in parabolic problems with nonlinear boundary conditions

Detalhes bibliográficos
Autor(a) principal: Carvalho, Alexandre Nolasco de
Data de Publicação: 2007
Outros Autores: Cruz, German Jesus Lozada [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.jmaa.2006.02.046
http://hdl.handle.net/11449/32922
Resumo: We obtain existence of asymptotically stable nonconstant equilibrium solutions for semilinear parabolic equations with nonlinear boundary conditions on small domains connected by thin channels. We prove the convergence of eigenvalues and eigenfunctions of the Laplace operator in such domains. This information is used to show that the asymptotic dynamics of the heat equation in this domain is equivalent to the asymptotic dynamics of a system of two ordinary differential equations diffusively (weakly) coupled. The main tools employed are the invariant manifold theory and a uniform trace theorem. (c) 2006 Elsevier B.V. All rights reserved.
id UNSP_7e8234a0e32b11dbc941e679eb37a773
oai_identifier_str oai:repositorio.unesp.br:11449/32922
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Patterns in parabolic problems with nonlinear boundary conditionsSemilinear parabolic problemsNonlinear boundary conditionsDumbbell domainsStable nonconstant equilibriaInvariant manifoldsWe obtain existence of asymptotically stable nonconstant equilibrium solutions for semilinear parabolic equations with nonlinear boundary conditions on small domains connected by thin channels. We prove the convergence of eigenvalues and eigenfunctions of the Laplace operator in such domains. This information is used to show that the asymptotic dynamics of the heat equation in this domain is equivalent to the asymptotic dynamics of a system of two ordinary differential equations diffusively (weakly) coupled. The main tools employed are the invariant manifold theory and a uniform trace theorem. (c) 2006 Elsevier B.V. All rights reserved.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade de São Paulo (USP), Instituto de Ciências Matemáticas e Computação, São Carlos, SP, BrasilUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Departamento de Matemática, São José do Rio Preto, SP, BrasilUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Departamento de Matemática, São José do Rio Preto, SP, BrasilCNPq: 305447/2005-0FAPESP: 2003/10042-0FAPESP: 2000/01479-8Elsevier B.V.Universidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Carvalho, Alexandre Nolasco deCruz, German Jesus Lozada [UNESP]2014-05-20T15:21:49Z2014-05-20T15:21:49Z2007-01-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1216-1239application/pdfhttp://dx.doi.org/10.1016/j.jmaa.2006.02.046Journal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B.V., v. 325, n. 2, p. 1216-1239, 2007.0022-247Xhttp://hdl.handle.net/11449/3292210.1016/j.jmaa.2006.02.046WOS:000242730600032WOS000242730600032.pdf9125376680065204Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Mathematical Analysis and Applications1.138info:eu-repo/semantics/openAccess2024-01-27T06:52:04Zoai:repositorio.unesp.br:11449/32922Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:03:33.361937Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Patterns in parabolic problems with nonlinear boundary conditions
title Patterns in parabolic problems with nonlinear boundary conditions
spellingShingle Patterns in parabolic problems with nonlinear boundary conditions
Carvalho, Alexandre Nolasco de
Semilinear parabolic problems
Nonlinear boundary conditions
Dumbbell domains
Stable nonconstant equilibria
Invariant manifolds
title_short Patterns in parabolic problems with nonlinear boundary conditions
title_full Patterns in parabolic problems with nonlinear boundary conditions
title_fullStr Patterns in parabolic problems with nonlinear boundary conditions
title_full_unstemmed Patterns in parabolic problems with nonlinear boundary conditions
title_sort Patterns in parabolic problems with nonlinear boundary conditions
author Carvalho, Alexandre Nolasco de
author_facet Carvalho, Alexandre Nolasco de
Cruz, German Jesus Lozada [UNESP]
author_role author
author2 Cruz, German Jesus Lozada [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Carvalho, Alexandre Nolasco de
Cruz, German Jesus Lozada [UNESP]
dc.subject.por.fl_str_mv Semilinear parabolic problems
Nonlinear boundary conditions
Dumbbell domains
Stable nonconstant equilibria
Invariant manifolds
topic Semilinear parabolic problems
Nonlinear boundary conditions
Dumbbell domains
Stable nonconstant equilibria
Invariant manifolds
description We obtain existence of asymptotically stable nonconstant equilibrium solutions for semilinear parabolic equations with nonlinear boundary conditions on small domains connected by thin channels. We prove the convergence of eigenvalues and eigenfunctions of the Laplace operator in such domains. This information is used to show that the asymptotic dynamics of the heat equation in this domain is equivalent to the asymptotic dynamics of a system of two ordinary differential equations diffusively (weakly) coupled. The main tools employed are the invariant manifold theory and a uniform trace theorem. (c) 2006 Elsevier B.V. All rights reserved.
publishDate 2007
dc.date.none.fl_str_mv 2007-01-15
2014-05-20T15:21:49Z
2014-05-20T15:21:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.jmaa.2006.02.046
Journal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B.V., v. 325, n. 2, p. 1216-1239, 2007.
0022-247X
http://hdl.handle.net/11449/32922
10.1016/j.jmaa.2006.02.046
WOS:000242730600032
WOS000242730600032.pdf
9125376680065204
url http://dx.doi.org/10.1016/j.jmaa.2006.02.046
http://hdl.handle.net/11449/32922
identifier_str_mv Journal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B.V., v. 325, n. 2, p. 1216-1239, 2007.
0022-247X
10.1016/j.jmaa.2006.02.046
WOS:000242730600032
WOS000242730600032.pdf
9125376680065204
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Mathematical Analysis and Applications
1.138
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1216-1239
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129577950642176