Patterns in parabolic problems with nonlinear boundary conditions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.jmaa.2006.02.046 http://hdl.handle.net/11449/32922 |
Resumo: | We obtain existence of asymptotically stable nonconstant equilibrium solutions for semilinear parabolic equations with nonlinear boundary conditions on small domains connected by thin channels. We prove the convergence of eigenvalues and eigenfunctions of the Laplace operator in such domains. This information is used to show that the asymptotic dynamics of the heat equation in this domain is equivalent to the asymptotic dynamics of a system of two ordinary differential equations diffusively (weakly) coupled. The main tools employed are the invariant manifold theory and a uniform trace theorem. (c) 2006 Elsevier B.V. All rights reserved. |
id |
UNSP_7e8234a0e32b11dbc941e679eb37a773 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/32922 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Patterns in parabolic problems with nonlinear boundary conditionsSemilinear parabolic problemsNonlinear boundary conditionsDumbbell domainsStable nonconstant equilibriaInvariant manifoldsWe obtain existence of asymptotically stable nonconstant equilibrium solutions for semilinear parabolic equations with nonlinear boundary conditions on small domains connected by thin channels. We prove the convergence of eigenvalues and eigenfunctions of the Laplace operator in such domains. This information is used to show that the asymptotic dynamics of the heat equation in this domain is equivalent to the asymptotic dynamics of a system of two ordinary differential equations diffusively (weakly) coupled. The main tools employed are the invariant manifold theory and a uniform trace theorem. (c) 2006 Elsevier B.V. All rights reserved.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade de São Paulo (USP), Instituto de Ciências Matemáticas e Computação, São Carlos, SP, BrasilUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Departamento de Matemática, São José do Rio Preto, SP, BrasilUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Departamento de Matemática, São José do Rio Preto, SP, BrasilCNPq: 305447/2005-0FAPESP: 2003/10042-0FAPESP: 2000/01479-8Elsevier B.V.Universidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Carvalho, Alexandre Nolasco deCruz, German Jesus Lozada [UNESP]2014-05-20T15:21:49Z2014-05-20T15:21:49Z2007-01-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1216-1239application/pdfhttp://dx.doi.org/10.1016/j.jmaa.2006.02.046Journal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B.V., v. 325, n. 2, p. 1216-1239, 2007.0022-247Xhttp://hdl.handle.net/11449/3292210.1016/j.jmaa.2006.02.046WOS:000242730600032WOS000242730600032.pdf9125376680065204Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Mathematical Analysis and Applications1.138info:eu-repo/semantics/openAccess2024-01-27T06:52:04Zoai:repositorio.unesp.br:11449/32922Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:03:33.361937Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Patterns in parabolic problems with nonlinear boundary conditions |
title |
Patterns in parabolic problems with nonlinear boundary conditions |
spellingShingle |
Patterns in parabolic problems with nonlinear boundary conditions Carvalho, Alexandre Nolasco de Semilinear parabolic problems Nonlinear boundary conditions Dumbbell domains Stable nonconstant equilibria Invariant manifolds |
title_short |
Patterns in parabolic problems with nonlinear boundary conditions |
title_full |
Patterns in parabolic problems with nonlinear boundary conditions |
title_fullStr |
Patterns in parabolic problems with nonlinear boundary conditions |
title_full_unstemmed |
Patterns in parabolic problems with nonlinear boundary conditions |
title_sort |
Patterns in parabolic problems with nonlinear boundary conditions |
author |
Carvalho, Alexandre Nolasco de |
author_facet |
Carvalho, Alexandre Nolasco de Cruz, German Jesus Lozada [UNESP] |
author_role |
author |
author2 |
Cruz, German Jesus Lozada [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Carvalho, Alexandre Nolasco de Cruz, German Jesus Lozada [UNESP] |
dc.subject.por.fl_str_mv |
Semilinear parabolic problems Nonlinear boundary conditions Dumbbell domains Stable nonconstant equilibria Invariant manifolds |
topic |
Semilinear parabolic problems Nonlinear boundary conditions Dumbbell domains Stable nonconstant equilibria Invariant manifolds |
description |
We obtain existence of asymptotically stable nonconstant equilibrium solutions for semilinear parabolic equations with nonlinear boundary conditions on small domains connected by thin channels. We prove the convergence of eigenvalues and eigenfunctions of the Laplace operator in such domains. This information is used to show that the asymptotic dynamics of the heat equation in this domain is equivalent to the asymptotic dynamics of a system of two ordinary differential equations diffusively (weakly) coupled. The main tools employed are the invariant manifold theory and a uniform trace theorem. (c) 2006 Elsevier B.V. All rights reserved. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-01-15 2014-05-20T15:21:49Z 2014-05-20T15:21:49Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.jmaa.2006.02.046 Journal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B.V., v. 325, n. 2, p. 1216-1239, 2007. 0022-247X http://hdl.handle.net/11449/32922 10.1016/j.jmaa.2006.02.046 WOS:000242730600032 WOS000242730600032.pdf 9125376680065204 |
url |
http://dx.doi.org/10.1016/j.jmaa.2006.02.046 http://hdl.handle.net/11449/32922 |
identifier_str_mv |
Journal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B.V., v. 325, n. 2, p. 1216-1239, 2007. 0022-247X 10.1016/j.jmaa.2006.02.046 WOS:000242730600032 WOS000242730600032.pdf 9125376680065204 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Mathematical Analysis and Applications 1.138 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1216-1239 application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129577950642176 |