Electroencephalogram data platform for application of reduction methods

Detalhes bibliográficos
Autor(a) principal: Albuquerque, Ana Carolina Gomes de Almeida
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/13225
Resumo: Long-term electroencephalogram (EEG) monitoring (≥24-h) is a resourceful tool for properly diagnosis sparse life-threatening events like non-convulsive seizures and status epilepticus in Intensive Care Unit (ICU) inpatients. Such EEG data requires objective methods for data reduction, transmission and analysis. This work aims to assess specificity and sensibility of HaEEG and aEEG methods in combination with conventional multichannel EEG when achieving seizure detection. A database architecture was designed to handle the interoperability, processing, and analysis of EEG data. Using data from CHB-MIT public EEG database, the reduced signal was obtained by EEG envelope segmentation, with 10 and 90 percentiles obtained for each segment. The use of asymmetrical filtering (2-15 Hz) and overall clinical band (1-70 Hz) was compared. The upper and lower margins of compressed segments were used to classify ictal and non-ictal epochs. Such classification was compared with the corresponding specialist seizure annotation for each patient. The difference between medians of instantaneous frequencies of ictal and non-ictal periods were assessed using Wilcoxon Rank Sum Test, which was significant for signals filtered from 2 to 15 Hz (p = 0.0055) but not for signals filtered from 1 to 70 Hz (p = 0.1816).
id UFRJ_6180dbf199d0ef6cf19e93422769df9d
oai_identifier_str oai:pantheon.ufrj.br:11422/13225
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling Electroencephalogram data platform for application of reduction methodsHilbert Amplitude-integrated ElectoecephalographyAmplitude-integrated ElectoecephalographyEEG Database for Epileptic Seizure DetectionCNPQ::ENGENHARIASLong-term electroencephalogram (EEG) monitoring (≥24-h) is a resourceful tool for properly diagnosis sparse life-threatening events like non-convulsive seizures and status epilepticus in Intensive Care Unit (ICU) inpatients. Such EEG data requires objective methods for data reduction, transmission and analysis. This work aims to assess specificity and sensibility of HaEEG and aEEG methods in combination with conventional multichannel EEG when achieving seizure detection. A database architecture was designed to handle the interoperability, processing, and analysis of EEG data. Using data from CHB-MIT public EEG database, the reduced signal was obtained by EEG envelope segmentation, with 10 and 90 percentiles obtained for each segment. The use of asymmetrical filtering (2-15 Hz) and overall clinical band (1-70 Hz) was compared. The upper and lower margins of compressed segments were used to classify ictal and non-ictal epochs. Such classification was compared with the corresponding specialist seizure annotation for each patient. The difference between medians of instantaneous frequencies of ictal and non-ictal periods were assessed using Wilcoxon Rank Sum Test, which was significant for signals filtered from 2 to 15 Hz (p = 0.0055) but not for signals filtered from 1 to 70 Hz (p = 0.1816).O eletroencefalograma (EEG) de longa duração (≥24-h) em monitoramento contínuo é diferencial no diagnóstico e classificação de eventos epileptiformes, como crises não convulsivas e status epilepticus, em pacientes de Unidades de Tratamento Intensivo (UTI). Este exame requer métodos objetivos de análise, redução e transmissão de dados. O objetivo desse trabalho é avaliar a especificidade e a sensibilidade dos métodos HaEEG e aEEG em combinação com EEG multicanal convencional na detecção de eventos epileptiformes. Uma arquitetura de integração de dados foi projetada para gerir o armazenamento, processamento e análise de dados de EEG. Foram utilizados dados do banco de dados de EEG público do CHB-MIT. O sinal reduzido foi obtido pela segmentação do envelope do EEG, com percentis 10 e 90 obtidos para cada segmento. A aplicação do filtro assimétrico (2-15 Hz) e em bandas clínicas (1-70 Hz) foi comparada. Os limiares superiores e inferiores dos segmentos do aEEG e HaEEG foram usados para classificar épocas ictais e não ictais. A classificação foi comparada com as anotações feitas por um especialista para cada paciente. As medianas das frequências instantâneas para períodos ictais e não ictais foram analisadas com Wilcoxon Rank Sum Test com significância para filtragem assimétrica (p = 0,0055), mas não nas bandas clínicas (p = 0,1816).Universidade Federal do Rio de JaneiroBrasilInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de EngenhariaPrograma de Pós-Graduação em Engenharia BiomédicaUFRJCagy, Mauríciohttp://lattes.cnpq.br/1413137090510984http://lattes.cnpq.br/0303993301924042Tierra Criollo, Carlos Juliohttp://lattes.cnpq.br/5743404268947726Ichinose, Roberto MacotoSilva, Eduardo Jorge Custódio daJunior Fiorani, MarioAlbuquerque, Ana Carolina Gomes de Almeida2020-10-14T02:25:36Z2023-12-21T03:02:22Z2019-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/11422/13225enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:02:22Zoai:pantheon.ufrj.br:11422/13225Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2024-11-11T16:23:14.190495Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Electroencephalogram data platform for application of reduction methods
title Electroencephalogram data platform for application of reduction methods
spellingShingle Electroencephalogram data platform for application of reduction methods
Albuquerque, Ana Carolina Gomes de Almeida
Hilbert Amplitude-integrated Electoecephalography
Amplitude-integrated Electoecephalography
EEG Database for Epileptic Seizure Detection
CNPQ::ENGENHARIAS
title_short Electroencephalogram data platform for application of reduction methods
title_full Electroencephalogram data platform for application of reduction methods
title_fullStr Electroencephalogram data platform for application of reduction methods
title_full_unstemmed Electroencephalogram data platform for application of reduction methods
title_sort Electroencephalogram data platform for application of reduction methods
author Albuquerque, Ana Carolina Gomes de Almeida
author_facet Albuquerque, Ana Carolina Gomes de Almeida
author_role author
dc.contributor.none.fl_str_mv Cagy, Maurício
http://lattes.cnpq.br/1413137090510984
http://lattes.cnpq.br/0303993301924042
Tierra Criollo, Carlos Julio
http://lattes.cnpq.br/5743404268947726
Ichinose, Roberto Macoto
Silva, Eduardo Jorge Custódio da
Junior Fiorani, Mario
dc.contributor.author.fl_str_mv Albuquerque, Ana Carolina Gomes de Almeida
dc.subject.por.fl_str_mv Hilbert Amplitude-integrated Electoecephalography
Amplitude-integrated Electoecephalography
EEG Database for Epileptic Seizure Detection
CNPQ::ENGENHARIAS
topic Hilbert Amplitude-integrated Electoecephalography
Amplitude-integrated Electoecephalography
EEG Database for Epileptic Seizure Detection
CNPQ::ENGENHARIAS
description Long-term electroencephalogram (EEG) monitoring (≥24-h) is a resourceful tool for properly diagnosis sparse life-threatening events like non-convulsive seizures and status epilepticus in Intensive Care Unit (ICU) inpatients. Such EEG data requires objective methods for data reduction, transmission and analysis. This work aims to assess specificity and sensibility of HaEEG and aEEG methods in combination with conventional multichannel EEG when achieving seizure detection. A database architecture was designed to handle the interoperability, processing, and analysis of EEG data. Using data from CHB-MIT public EEG database, the reduced signal was obtained by EEG envelope segmentation, with 10 and 90 percentiles obtained for each segment. The use of asymmetrical filtering (2-15 Hz) and overall clinical band (1-70 Hz) was compared. The upper and lower margins of compressed segments were used to classify ictal and non-ictal epochs. Such classification was compared with the corresponding specialist seizure annotation for each patient. The difference between medians of instantaneous frequencies of ictal and non-ictal periods were assessed using Wilcoxon Rank Sum Test, which was significant for signals filtered from 2 to 15 Hz (p = 0.0055) but not for signals filtered from 1 to 70 Hz (p = 0.1816).
publishDate 2019
dc.date.none.fl_str_mv 2019-06
2020-10-14T02:25:36Z
2023-12-21T03:02:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11422/13225
url http://hdl.handle.net/11422/13225
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Biomédica
UFRJ
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Biomédica
UFRJ
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv pantheon@sibi.ufrj.br
_version_ 1823672641868791808