Analysis of magnetohydrodynamic natural convection in closed cavities through integral transforms

Detalhes bibliográficos
Autor(a) principal: Matt, Carlos Frederico Trotta
Data de Publicação: 2017
Outros Autores: Quaresma, João Nazareno Nonato, Cotta, Renato Machado
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/8391
Resumo: Indisponível.
id UFRJ_654b5ae2439005132342fc9ffcc5060d
oai_identifier_str oai:pantheon.ufrj.br:11422/8391
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling Matt, Carlos Frederico TrottaQuaresma, João Nazareno NonatoCotta, Renato Machado2019-06-10T15:25:14Z2023-11-30T03:03:29Z2017-06-030017-9310http://hdl.handle.net/11422/839110.1016/j.ijheatmasstransfer.2017.05.043Indisponível.A hybrid numerical-analytical solution is proposed to analyze MHD (magnetohydrodynamic) natural convection of an electrically-conducting fluid within a square cavity, differentially heated at the sidewalls and subjected to an inclined external magnetic field. The first goal is to expand the spectrum of application of the so called Generalized Integral Transform Technique (GITT), dealing with a multiphysics formulation, while further demonstrating the relative merits of the proposed eigenfunction expansion approach in handling highly nonlinear and coupled systems of partial differential equations. The second goal is to provide a set of benchmark results in this important application for quantities of practical interest in determining the heat transfer rates, such as the average Nusselt number. The two-dimensional steady state equations are written in dimensionless form using the streamfunction-only formulation and are subsequently solved with the GITT approach, under automatic relative error control. Critical comparisons are performed against previous work reported in the literature, both computational and experimental, together with the corresponding physical interpretations, for different values of the governing parameters, such as Grashof number, Hartmann number, Prandtl number, and magnetic field inclination angle.Submitted by Jairo Amaro (jairo.amaro@sibi.ufrj.br) on 2019-06-10T15:25:14Z No. of bitstreams: 1 8-2017_Analysis-of-magnetohydrodynamic-natural-convection-min.pdf: 436507 bytes, checksum: 271bc51a9712fa265e291fb54b2b4bee (MD5)Made available in DSpace on 2019-06-10T15:25:14Z (GMT). No. of bitstreams: 1 8-2017_Analysis-of-magnetohydrodynamic-natural-convection-min.pdf: 436507 bytes, checksum: 271bc51a9712fa265e291fb54b2b4bee (MD5) Previous issue date: 2017-06-03engElsevierBrasilNúcleo Interdisciplinar de Dinâmica dos FluidosInternational Journal of Heat and Mass TransferCNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOSMagnetohydrodynamicsNatural convectionClosed cavitiesElectrically-conducting fluidHybrid methodsIntegral transformsAnalysis of magnetohydrodynamic natural convection in closed cavities through integral transformsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article113502513365 diasinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJORIGINAL8-2017_Analysis-of-magnetohydrodynamic-natural-convection-min.pdf8-2017_Analysis-of-magnetohydrodynamic-natural-convection-min.pdfapplication/pdf436507http://pantheon.ufrj.br:80/bitstream/11422/8391/1/8-2017_Analysis-of-magnetohydrodynamic-natural-convection-min.pdf271bc51a9712fa265e291fb54b2b4beeMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81853http://pantheon.ufrj.br:80/bitstream/11422/8391/2/license.txtdd32849f2bfb22da963c3aac6e26e255MD5211422/83912023-11-30 00:03:29.284oai:pantheon.ufrj.br:11422/8391TElDRU7Dh0EgTsODTy1FWENMVVNJVkEgREUgRElTVFJJQlVJw4fDg08KCkFvIGFzc2luYXIgZSBlbnRyZWdhciBlc3RhIGxpY2Vuw6dhLCB2b2PDqihzKSBvKHMpIGF1dG9yKGVzKSBvdSBwcm9wcmlldMOhcmlvKHMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBjb25jZWRlKG0pIGFvIFJlcG9zaXTDs3JpbyBQYW50aGVvbiBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gZGUgSmFuZWlybyAoVUZSSikgbyBkaXJlaXRvIG7Do28gLSBleGNsdXNpdm8gZGUgcmVwcm9kdXppciwgY29udmVydGVyIChjb21vIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vKSBlbSB0b2RvIG8gbXVuZG8sIGVtIGZvcm1hdG8gZWxldHLDtG5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8sIG1hcyBuw6NvIGxpbWl0YWRvIGEgw6F1ZGlvIGUvb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZSSiBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhZHV6aXIgYSBhcHJlc2VudGHDp8OjbyBkZSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gY29tIGEgZmluYWxpZGFkZSBkZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogdGFtYsOpbSBjb25jb3JkYSBxdWUgYSBVRlJKIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXNzYSBzdWJtaXNzw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8OjbyBkaWdpdGFsLgoKRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZSB2b2PDqiB0ZW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIGEgc3VhIGFwcmVzZW50YcOnw6NvLCBjb20gbyBtZWxob3IgZGUgc2V1cyBjb25oZWNpbWVudG9zLCBuw6NvIGluZnJpbmdpIGRpcmVpdG9zIGF1dG9yYWlzIGRlIHRlcmNlaXJvcy4KClNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCB2b2PDqiBuw6NvIHRlbSBkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBlIGNvbmNlZGUgYSBVRlJKIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRhIHN1Ym1pc3PDo28uCgpTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqSBiYXNlYWRvIGVtIHRyYWJhbGhvIHF1ZSBmb2ksIG91IHRlbSBzaWRvIHBhdHJvY2luYWRvIG91IGFwb2lhZG8gcG9yIHVtYSBhZ8OqbmNpYSBvdSBvdXRybyhzKSBvcmdhbmlzbW8ocykgcXVlIG7Do28gYSBVRlJKLCB2b2PDqiBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWxxdWVyIGRpcmVpdG8gZGUgUkVWSVPDg08gb3UgZGUgb3V0cmFzIG9icmlnYcOnw7VlcyByZXF1ZXJpZGFzIHBvciBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUkogaXLDoSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8ocykgc2V1KHMpIG5vbWUocykgY29tbyBhdXRvcihlcykgb3UgcHJvcHJpZXTDoXJpbyhzKSBkYSBzdWJtaXNzw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EsIG5vIGF0byBkZSBzdWJtaXNzw6NvLgo=Repositório de PublicaçõesPUBhttp://www.pantheon.ufrj.br/oai/requestopendoar:2023-11-30T03:03:29Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.en.fl_str_mv Analysis of magnetohydrodynamic natural convection in closed cavities through integral transforms
title Analysis of magnetohydrodynamic natural convection in closed cavities through integral transforms
spellingShingle Analysis of magnetohydrodynamic natural convection in closed cavities through integral transforms
Matt, Carlos Frederico Trotta
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
Magnetohydrodynamics
Natural convection
Closed cavities
Electrically-conducting fluid
Hybrid methods
Integral transforms
title_short Analysis of magnetohydrodynamic natural convection in closed cavities through integral transforms
title_full Analysis of magnetohydrodynamic natural convection in closed cavities through integral transforms
title_fullStr Analysis of magnetohydrodynamic natural convection in closed cavities through integral transforms
title_full_unstemmed Analysis of magnetohydrodynamic natural convection in closed cavities through integral transforms
title_sort Analysis of magnetohydrodynamic natural convection in closed cavities through integral transforms
author Matt, Carlos Frederico Trotta
author_facet Matt, Carlos Frederico Trotta
Quaresma, João Nazareno Nonato
Cotta, Renato Machado
author_role author
author2 Quaresma, João Nazareno Nonato
Cotta, Renato Machado
author2_role author
author
dc.contributor.author.fl_str_mv Matt, Carlos Frederico Trotta
Quaresma, João Nazareno Nonato
Cotta, Renato Machado
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
topic CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
Magnetohydrodynamics
Natural convection
Closed cavities
Electrically-conducting fluid
Hybrid methods
Integral transforms
dc.subject.eng.fl_str_mv Magnetohydrodynamics
Natural convection
Closed cavities
Electrically-conducting fluid
Hybrid methods
Integral transforms
description Indisponível.
publishDate 2017
dc.date.issued.fl_str_mv 2017-06-03
dc.date.accessioned.fl_str_mv 2019-06-10T15:25:14Z
dc.date.available.fl_str_mv 2023-11-30T03:03:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11422/8391
dc.identifier.issn.pt_BR.fl_str_mv 0017-9310
dc.identifier.doi.pt_BR.fl_str_mv 10.1016/j.ijheatmasstransfer.2017.05.043
identifier_str_mv 0017-9310
10.1016/j.ijheatmasstransfer.2017.05.043
url http://hdl.handle.net/11422/8391
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.en.fl_str_mv International Journal of Heat and Mass Transfer
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Núcleo Interdisciplinar de Dinâmica dos Fluidos
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
bitstream.url.fl_str_mv http://pantheon.ufrj.br:80/bitstream/11422/8391/1/8-2017_Analysis-of-magnetohydrodynamic-natural-convection-min.pdf
http://pantheon.ufrj.br:80/bitstream/11422/8391/2/license.txt
bitstream.checksum.fl_str_mv 271bc51a9712fa265e291fb54b2b4bee
dd32849f2bfb22da963c3aac6e26e255
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv
_version_ 1784097145550274560