Homogeneidades espacial e observacional da distribuição de galáxias

Detalhes bibliográficos
Autor(a) principal: Lemos, Luis Juracy Rangel
Data de Publicação: 2006
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/5943
Resumo: In this work we propose a second way of analysing the homogeneity of the matter distribution in the Universe, called here as observational homogeneity (OH), and which is carried out along the past light cone null type hypersurface. The usual type of homogeneity is given by the Cosmological Principle, called here as spatial homogeneity (SH), and which is defined along space-like hypersurfaces of the spacetime. In this work we adopted the Einstein-de Sitter cosmological model. All discussion regarding homogeneity were done by means of four cosmological distances, namely, the area distance dA, the galaxy area distance dG, the luminosity distance dL and the redshift distance dz. Simulations of various types of counting of cosmological sources were carried out and in the case of an universe model with SH we used the number counting obtained from the Einsteinde Sitter (EdS) model (NEdS), since it assumes the Cosmological Principle. In order to simulate an universe with OH, we adopted the number counts expression advanced by Wertz (1970) and Pietronero (1987) for the galaxy distribution. Starting from two radial density functions defined in Ribeiro (2005), namely the differential density γi and the integral differential density γ ∗ i , we carried out an analysis of spatial and observational homogeneities of the galaxy distribution, were the latter (OH) was defined by the constant value of γ ∗ i . Various plots were presented showing the central role played by the cosmological distance choice. It was also clearly observed that in order to characterize whether or not the large-scale galaxy distribution in the Universe has, or has not, OH, it is necessary to know not only the general mass-energy distribution, which is determined by the count Ni of cosmological sources, but also the geometrical volume which defines the density and, by itself, depends on the cosmological distance.
id UFRJ_7c9b4c107d3582f9e701ffb1166470a5
oai_identifier_str oai:pantheon.ufrj.br:11422/5943
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling Homogeneidades espacial e observacional da distribuição de galáxiasCosmologia ObservacionalAstrofísica extragaláticaCNPQ::CIENCIAS EXATAS E DA TERRA::ASTRONOMIA::ASTROFISICA EXTRAGALACTICA::COSMOLOGIAIn this work we propose a second way of analysing the homogeneity of the matter distribution in the Universe, called here as observational homogeneity (OH), and which is carried out along the past light cone null type hypersurface. The usual type of homogeneity is given by the Cosmological Principle, called here as spatial homogeneity (SH), and which is defined along space-like hypersurfaces of the spacetime. In this work we adopted the Einstein-de Sitter cosmological model. All discussion regarding homogeneity were done by means of four cosmological distances, namely, the area distance dA, the galaxy area distance dG, the luminosity distance dL and the redshift distance dz. Simulations of various types of counting of cosmological sources were carried out and in the case of an universe model with SH we used the number counting obtained from the Einsteinde Sitter (EdS) model (NEdS), since it assumes the Cosmological Principle. In order to simulate an universe with OH, we adopted the number counts expression advanced by Wertz (1970) and Pietronero (1987) for the galaxy distribution. Starting from two radial density functions defined in Ribeiro (2005), namely the differential density γi and the integral differential density γ ∗ i , we carried out an analysis of spatial and observational homogeneities of the galaxy distribution, were the latter (OH) was defined by the constant value of γ ∗ i . Various plots were presented showing the central role played by the cosmological distance choice. It was also clearly observed that in order to characterize whether or not the large-scale galaxy distribution in the Universe has, or has not, OH, it is necessary to know not only the general mass-energy distribution, which is determined by the count Ni of cosmological sources, but also the geometrical volume which defines the density and, by itself, depends on the cosmological distance.Análise da homogeneidade da distribuição de matéria no Universo, aqui chamada de homogeneidade observacional (HO) e a qual é feita na hipersuperfície tipo-nulo do cone de luz do passado. O tipo de análise da homogeneidade já conhecida é definida pelo Princípio Cosmológico, que chamamos de homogeneidade espacial (HE), a qual ocorre nas hipersuperfícies tipo-espacial do espaço-tempo. Realizamos este trabalho utilizando o modelo cosmológico de Einstein-de Sitter. Todas as discussões de homogeneidades foram feitas para quatro tipos de distâncias cosmológicas, que são: distância por área dA, distância por área galáctica dG, distância de luminosidade dL e distância por desvio para o vermelho dz. Simulamos vários tipos de contagens de fontes cosmológicas e, no caso de universo com homogeneidade espacial, usamos a contagem numérica prevista pelo modelo de Einstein-de Sitter (EdS, NEdS), pois assume o Princípio Cosmológico. Para simularmos o universo com homogeneidade observacional, usamos a contagem numérica proposta por Wertz (1970) e Pietronero (1987), para a distribuição de galáxias. A partir de duas funções de densidade numérica radiais definidas em Ribeiro (2005), que são a densidade diferencial γi e a densidade diferencial integral γi*, fizemos uma análise das homogeneidades espacial e observacional da distribuição de galáxias, esta última é definida pela constância de γi*. Foram apresentados gráficos mostrando o papel central da escolha da distância cosmológica na determinação das densidades. Pôde ser observado claramente que para caracterizar se a distribuição de galáxias em grande escala do Universo possui ou não HO, é necessário conhecer não somente a distribuição geral de massa-energia, a qual é determinada pela contagem Ni de fontes cosmológicas, mas também o volume geométrico que define densidade, que, por sua vez, depende da distância cosmológica.Universidade Federal do Rio de JaneiroBrasilObservatório do ValongoPrograma de Pós-Graduação em AstronomiaUFRJRibeiro, Marcelo Byrrohttp://lattes.cnpq.br/1508456345535914http://lattes.cnpq.br/4797885791673384Lima, José Ademir Sales dehttp://lattes.cnpq.br/6300661358038320Calvão, Maurício Ortizhttp://lattes.cnpq.br/0727460750403139Lemos, Luis Juracy Rangel2018-12-06T16:30:59Z2023-12-21T03:04:12Z2006-10-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/11422/5943porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:04:12Zoai:pantheon.ufrj.br:11422/5943Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:04:12Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Homogeneidades espacial e observacional da distribuição de galáxias
title Homogeneidades espacial e observacional da distribuição de galáxias
spellingShingle Homogeneidades espacial e observacional da distribuição de galáxias
Lemos, Luis Juracy Rangel
Cosmologia Observacional
Astrofísica extragalática
CNPQ::CIENCIAS EXATAS E DA TERRA::ASTRONOMIA::ASTROFISICA EXTRAGALACTICA::COSMOLOGIA
title_short Homogeneidades espacial e observacional da distribuição de galáxias
title_full Homogeneidades espacial e observacional da distribuição de galáxias
title_fullStr Homogeneidades espacial e observacional da distribuição de galáxias
title_full_unstemmed Homogeneidades espacial e observacional da distribuição de galáxias
title_sort Homogeneidades espacial e observacional da distribuição de galáxias
author Lemos, Luis Juracy Rangel
author_facet Lemos, Luis Juracy Rangel
author_role author
dc.contributor.none.fl_str_mv Ribeiro, Marcelo Byrro
http://lattes.cnpq.br/1508456345535914
http://lattes.cnpq.br/4797885791673384
Lima, José Ademir Sales de
http://lattes.cnpq.br/6300661358038320
Calvão, Maurício Ortiz
http://lattes.cnpq.br/0727460750403139
dc.contributor.author.fl_str_mv Lemos, Luis Juracy Rangel
dc.subject.por.fl_str_mv Cosmologia Observacional
Astrofísica extragalática
CNPQ::CIENCIAS EXATAS E DA TERRA::ASTRONOMIA::ASTROFISICA EXTRAGALACTICA::COSMOLOGIA
topic Cosmologia Observacional
Astrofísica extragalática
CNPQ::CIENCIAS EXATAS E DA TERRA::ASTRONOMIA::ASTROFISICA EXTRAGALACTICA::COSMOLOGIA
description In this work we propose a second way of analysing the homogeneity of the matter distribution in the Universe, called here as observational homogeneity (OH), and which is carried out along the past light cone null type hypersurface. The usual type of homogeneity is given by the Cosmological Principle, called here as spatial homogeneity (SH), and which is defined along space-like hypersurfaces of the spacetime. In this work we adopted the Einstein-de Sitter cosmological model. All discussion regarding homogeneity were done by means of four cosmological distances, namely, the area distance dA, the galaxy area distance dG, the luminosity distance dL and the redshift distance dz. Simulations of various types of counting of cosmological sources were carried out and in the case of an universe model with SH we used the number counting obtained from the Einsteinde Sitter (EdS) model (NEdS), since it assumes the Cosmological Principle. In order to simulate an universe with OH, we adopted the number counts expression advanced by Wertz (1970) and Pietronero (1987) for the galaxy distribution. Starting from two radial density functions defined in Ribeiro (2005), namely the differential density γi and the integral differential density γ ∗ i , we carried out an analysis of spatial and observational homogeneities of the galaxy distribution, were the latter (OH) was defined by the constant value of γ ∗ i . Various plots were presented showing the central role played by the cosmological distance choice. It was also clearly observed that in order to characterize whether or not the large-scale galaxy distribution in the Universe has, or has not, OH, it is necessary to know not only the general mass-energy distribution, which is determined by the count Ni of cosmological sources, but also the geometrical volume which defines the density and, by itself, depends on the cosmological distance.
publishDate 2006
dc.date.none.fl_str_mv 2006-10-16
2018-12-06T16:30:59Z
2023-12-21T03:04:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11422/5943
url http://hdl.handle.net/11422/5943
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Observatório do Valongo
Programa de Pós-Graduação em Astronomia
UFRJ
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Observatório do Valongo
Programa de Pós-Graduação em Astronomia
UFRJ
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv pantheon@sibi.ufrj.br
_version_ 1815455979626561536