Rejection-oriented learning without complete class information

Detalhes bibliográficos
Autor(a) principal: Cardoso, Douglas de Oliveira
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/10186
Resumo: Machine Learning is commonly used to support decision-making in numerous, diverse contexts. Its usefulness in this regard is unquestionable: there are complex systems built on the top of machine learning techniques whose descriptive and predictive capabilities go far beyond those of human beings. However, these systems still have limitations, whose analysis enable to estimate their applicability and confidence in various cases. This is interesting considering that abstention from the provision of a response is preferable to make a mistake in doing so. In the context of classification-like tasks, the indication of such inconclusive output is called rejection. The research which culminated in this thesis led to the conception, implementation and evaluation of rejection-oriented learning systems for two distinct tasks: open set recognition and data stream clustering. These system were derived from WiSARD artificial neural network, which had rejection modelling incorporated into its functioning. This text details and discuss such realizations. It also presents experimental results which allow assess the scientific and practical importance of the proposed state-of-the-art methodology.
id UFRJ_bc87870b88fed217f716e88b273a34fc
oai_identifier_str oai:pantheon.ufrj.br:11422/10186
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling Rejection-oriented learning without complete class informationEngenharia de Sistemas e ComputaçãoRedes neurais artificiaisFluxos de dadosCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOMachine Learning is commonly used to support decision-making in numerous, diverse contexts. Its usefulness in this regard is unquestionable: there are complex systems built on the top of machine learning techniques whose descriptive and predictive capabilities go far beyond those of human beings. However, these systems still have limitations, whose analysis enable to estimate their applicability and confidence in various cases. This is interesting considering that abstention from the provision of a response is preferable to make a mistake in doing so. In the context of classification-like tasks, the indication of such inconclusive output is called rejection. The research which culminated in this thesis led to the conception, implementation and evaluation of rejection-oriented learning systems for two distinct tasks: open set recognition and data stream clustering. These system were derived from WiSARD artificial neural network, which had rejection modelling incorporated into its functioning. This text details and discuss such realizations. It also presents experimental results which allow assess the scientific and practical importance of the proposed state-of-the-art methodology.Aprendizado de Máquina é comumente usado para apoiar a tomada de decisão em numerosos e diversos contextos. Sua utilidade neste sentido é inquestionável: existem sistemas complexos baseados em técnicas de aprendizado de máquina cujas capacidades descritivas e preditivas vão muito além das dos seres humanos. Contudo, esses sistemas ainda possuem limitações, cuja análise permite estimar sua aplicabilidade e confiança em vários casos. Isto é interessante considerando que a abstenção da provisão de uma resposta é preferível a cometer um equívoco ao realizar tal ação. No contexto de classificação e tarefas similares, a indicação desse resultado inconclusivo é chamada de rejeição. A pesquisa que culminou nesta tese proporcionou a concepção, implementação e avaliação de sistemas de aprendizado orientados `a rejeição para duas tarefas distintas: reconhecimento em cenário abertos e agrupamento de dados em fluxo contínuo. Estes sistemas foram derivados da rede neural artificial WiSARD, que teve a modelagem de rejeição incorporada a seu funcionamento. Este texto detalha e discute tais realizações. Ele também apresenta resultados experimentais que permitem avaliar a importância científica e prática da metodologia de ponta proposta.Universidade Federal do Rio de JaneiroBrasilInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de EngenhariaPrograma de Pós-Graduação em Engenharia de Sistemas e ComputaçãoUFRJFrança, Felipe Maia Galvãohttp://lattes.cnpq.br/9438219886705967Gama, João Manuel Portela daPedreira, Carlos EduardoXexéo, Geraldo BonorinoBarreto, Guilherme de AlencarRibeiro, Rita Paula AlmeidaCardoso, Douglas de Oliveira2019-10-22T14:06:13Z2023-12-21T03:01:45Z2017-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://hdl.handle.net/11422/10186enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:01:45Zoai:pantheon.ufrj.br:11422/10186Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:01:45Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Rejection-oriented learning without complete class information
title Rejection-oriented learning without complete class information
spellingShingle Rejection-oriented learning without complete class information
Cardoso, Douglas de Oliveira
Engenharia de Sistemas e Computação
Redes neurais artificiais
Fluxos de dados
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Rejection-oriented learning without complete class information
title_full Rejection-oriented learning without complete class information
title_fullStr Rejection-oriented learning without complete class information
title_full_unstemmed Rejection-oriented learning without complete class information
title_sort Rejection-oriented learning without complete class information
author Cardoso, Douglas de Oliveira
author_facet Cardoso, Douglas de Oliveira
author_role author
dc.contributor.none.fl_str_mv França, Felipe Maia Galvão
http://lattes.cnpq.br/9438219886705967
Gama, João Manuel Portela da
Pedreira, Carlos Eduardo
Xexéo, Geraldo Bonorino
Barreto, Guilherme de Alencar
Ribeiro, Rita Paula Almeida
dc.contributor.author.fl_str_mv Cardoso, Douglas de Oliveira
dc.subject.por.fl_str_mv Engenharia de Sistemas e Computação
Redes neurais artificiais
Fluxos de dados
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic Engenharia de Sistemas e Computação
Redes neurais artificiais
Fluxos de dados
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Machine Learning is commonly used to support decision-making in numerous, diverse contexts. Its usefulness in this regard is unquestionable: there are complex systems built on the top of machine learning techniques whose descriptive and predictive capabilities go far beyond those of human beings. However, these systems still have limitations, whose analysis enable to estimate their applicability and confidence in various cases. This is interesting considering that abstention from the provision of a response is preferable to make a mistake in doing so. In the context of classification-like tasks, the indication of such inconclusive output is called rejection. The research which culminated in this thesis led to the conception, implementation and evaluation of rejection-oriented learning systems for two distinct tasks: open set recognition and data stream clustering. These system were derived from WiSARD artificial neural network, which had rejection modelling incorporated into its functioning. This text details and discuss such realizations. It also presents experimental results which allow assess the scientific and practical importance of the proposed state-of-the-art methodology.
publishDate 2017
dc.date.none.fl_str_mv 2017-03
2019-10-22T14:06:13Z
2023-12-21T03:01:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11422/10186
url http://hdl.handle.net/11422/10186
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia de Sistemas e Computação
UFRJ
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia de Sistemas e Computação
UFRJ
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv pantheon@sibi.ufrj.br
_version_ 1815455999872466944