Copula based models for serial dependence
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | |
Tipo de documento: | Relatório |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRJ |
Texto Completo: | http://hdl.handle.net/11422/10048 |
Resumo: | This paper is concerned with the statistical modeling of the dependence structure in the ¯rst and second moments of a univariate ¯nancial time series using the concept of copulas. The appealing feature of the method is that it captures not just the linear form of dependence (a job usually accomplished by ARIMA linear models), but also the non-linear ones, including tail dependence, the dependence occuring only among extreme values. In addition we investigate the changes in the mean modeling after whitening the data through the application of GARCH type ¯lters. Sixty two U.S. stocks are selected to illustrate the methodologies. The copula based results corroborate empirical evidences on the existence of linear and non-linear dependence at the mean and at the volatility levels, and contributes to practice by providing yet a simple but powerful method for capturing the dynamics in a time series. Applications may follow and include VaR calculation, simulations based derivatives pricing, and asset allocation decisions. We recall that the literature is still inconclusive as to the most appropriate Value-at-Risk computing approach, which seems to be a data dependent decision. |
id |
UFRJ_df4143cabc58a29ade52c5c777b6f66c |
---|---|
oai_identifier_str |
oai:pantheon.ufrj.br:11422/10048 |
network_acronym_str |
UFRJ |
network_name_str |
Repositório Institucional da UFRJ |
repository_id_str |
|
spelling |
Copula based models for serial dependenceFinançasCópulas (Estatística matemática)FinanceCopulas (Mathematical Statistics)Working paperCNPQ::CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAOThis paper is concerned with the statistical modeling of the dependence structure in the ¯rst and second moments of a univariate ¯nancial time series using the concept of copulas. The appealing feature of the method is that it captures not just the linear form of dependence (a job usually accomplished by ARIMA linear models), but also the non-linear ones, including tail dependence, the dependence occuring only among extreme values. In addition we investigate the changes in the mean modeling after whitening the data through the application of GARCH type ¯lters. Sixty two U.S. stocks are selected to illustrate the methodologies. The copula based results corroborate empirical evidences on the existence of linear and non-linear dependence at the mean and at the volatility levels, and contributes to practice by providing yet a simple but powerful method for capturing the dynamics in a time series. Applications may follow and include VaR calculation, simulations based derivatives pricing, and asset allocation decisions. We recall that the literature is still inconclusive as to the most appropriate Value-at-Risk computing approach, which seems to be a data dependent decision.Indisponível.Universidade Federal do Rio de JaneiroBrasilInstituto COPPEAD de AdministraçãoUFRJ2019-10-10T15:42:07Z2023-12-21T03:01:35Z2010info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/reportMENDES, Beatriz Vaz de Melo; AÍUBE, Cecília. Copula based models for serial dependence. Rio de Janeiro: UFRJ, 2010. 18 p. (Relatórios COPPEAD, 389).97885750807641518-3335http://hdl.handle.net/11422/10048engRelatórios COPPEADMendes, Beatriz Vaz de MeloAíube, Cecíliainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:01:35Zoai:pantheon.ufrj.br:11422/10048Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:01:35Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false |
dc.title.none.fl_str_mv |
Copula based models for serial dependence |
title |
Copula based models for serial dependence |
spellingShingle |
Copula based models for serial dependence Mendes, Beatriz Vaz de Melo Finanças Cópulas (Estatística matemática) Finance Copulas (Mathematical Statistics) Working paper CNPQ::CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO |
title_short |
Copula based models for serial dependence |
title_full |
Copula based models for serial dependence |
title_fullStr |
Copula based models for serial dependence |
title_full_unstemmed |
Copula based models for serial dependence |
title_sort |
Copula based models for serial dependence |
author |
Mendes, Beatriz Vaz de Melo |
author_facet |
Mendes, Beatriz Vaz de Melo Aíube, Cecília |
author_role |
author |
author2 |
Aíube, Cecília |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Mendes, Beatriz Vaz de Melo Aíube, Cecília |
dc.subject.por.fl_str_mv |
Finanças Cópulas (Estatística matemática) Finance Copulas (Mathematical Statistics) Working paper CNPQ::CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO |
topic |
Finanças Cópulas (Estatística matemática) Finance Copulas (Mathematical Statistics) Working paper CNPQ::CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO |
description |
This paper is concerned with the statistical modeling of the dependence structure in the ¯rst and second moments of a univariate ¯nancial time series using the concept of copulas. The appealing feature of the method is that it captures not just the linear form of dependence (a job usually accomplished by ARIMA linear models), but also the non-linear ones, including tail dependence, the dependence occuring only among extreme values. In addition we investigate the changes in the mean modeling after whitening the data through the application of GARCH type ¯lters. Sixty two U.S. stocks are selected to illustrate the methodologies. The copula based results corroborate empirical evidences on the existence of linear and non-linear dependence at the mean and at the volatility levels, and contributes to practice by providing yet a simple but powerful method for capturing the dynamics in a time series. Applications may follow and include VaR calculation, simulations based derivatives pricing, and asset allocation decisions. We recall that the literature is still inconclusive as to the most appropriate Value-at-Risk computing approach, which seems to be a data dependent decision. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 2019-10-10T15:42:07Z 2023-12-21T03:01:35Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/report |
format |
report |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MENDES, Beatriz Vaz de Melo; AÍUBE, Cecília. Copula based models for serial dependence. Rio de Janeiro: UFRJ, 2010. 18 p. (Relatórios COPPEAD, 389). 9788575080764 1518-3335 http://hdl.handle.net/11422/10048 |
identifier_str_mv |
MENDES, Beatriz Vaz de Melo; AÍUBE, Cecília. Copula based models for serial dependence. Rio de Janeiro: UFRJ, 2010. 18 p. (Relatórios COPPEAD, 389). 9788575080764 1518-3335 |
url |
http://hdl.handle.net/11422/10048 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Relatórios COPPEAD |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro Brasil Instituto COPPEAD de Administração UFRJ |
publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro Brasil Instituto COPPEAD de Administração UFRJ |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRJ instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
instacron_str |
UFRJ |
institution |
UFRJ |
reponame_str |
Repositório Institucional da UFRJ |
collection |
Repositório Institucional da UFRJ |
repository.name.fl_str_mv |
Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ) |
repository.mail.fl_str_mv |
pantheon@sibi.ufrj.br |
_version_ |
1815455998835425280 |