Enhancing the discrimination of alternatives in Fuzzy-Topsis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/30634 |
Resumo: | Fuzzy-TOPSIS is one of the most widely applied methods for solving multi-attribute decision making problems. However, an analysis of academic and real-life applications of this method has pointed out that the final alternative scores are very close, with little dispersion among them, making it difficult for the decision makers’ to choice/ranking the alternatives. The main objective of this paper is to enhance the ability of Fuzzy-TOPSIS to discriminate alternatives, making it easy for a decision maker to select or ranking alternatives. To achieve this, we redefined the computation of the positive and negative ideal solution of the classical TOPSIS method as a combination of the fuzzy concordance and discordance indexes from Fuzzy-ELECTRE. The proposed model was validated in a real case study, and further compared with Fuzzy-ELECTRE, using simulation experiments, and Fuzzy-TOPSIS, using results from four recent papers published in the literature. The results obtained show that the proposed method improved the ranking and sorting of the alternatives for all analyzed cases, considering ranking dispersion, global interval range of the scores, and the difference between the first and second best alternatives. The main justification for this behavior is the partial non-compensatory nature of our method, introduced by incorporating some ELECTRE’s elements into Fuzzy-TOPSIS |
id |
UFRN_01e0b4be02613eb4b9bc5328ecdd4f14 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/30634 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Santi, ÉvertonFerreira, LucianoBorenstein, Denis2020-11-23T19:08:03Z2020-11-23T19:08:03Z2017-02-06SANTI, Éverton; FERREIRA, Luciano; BORENSTEIN, Denis. Enhancing The Discrimination of Alternatives in Fuzzy-Topsis. Infor: Information Systems and Operational Research, [S.L.], v. 53, n. 4, p. 155-169, nov. 2015. Disponível em: https://www.tandfonline.com/doi/abs/10.3138/infor.53.4.155?journalCode=tinf20. Acesso em: 08 set. 2020. http://dx.doi.org/10.3138/infor.53.4.1550315-5986https://repositorio.ufrn.br/handle/123456789/3063410.3138/infor.53.4.155Taylor and FrancisMulticriteriaELECTREDecision makingTOPSISFuzzy setsEnhancing the discrimination of alternatives in Fuzzy-Topsisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleFuzzy-TOPSIS is one of the most widely applied methods for solving multi-attribute decision making problems. However, an analysis of academic and real-life applications of this method has pointed out that the final alternative scores are very close, with little dispersion among them, making it difficult for the decision makers’ to choice/ranking the alternatives. The main objective of this paper is to enhance the ability of Fuzzy-TOPSIS to discriminate alternatives, making it easy for a decision maker to select or ranking alternatives. To achieve this, we redefined the computation of the positive and negative ideal solution of the classical TOPSIS method as a combination of the fuzzy concordance and discordance indexes from Fuzzy-ELECTRE. The proposed model was validated in a real case study, and further compared with Fuzzy-ELECTRE, using simulation experiments, and Fuzzy-TOPSIS, using results from four recent papers published in the literature. The results obtained show that the proposed method improved the ranking and sorting of the alternatives for all analyzed cases, considering ranking dispersion, global interval range of the scores, and the difference between the first and second best alternatives. The main justification for this behavior is the partial non-compensatory nature of our method, introduced by incorporating some ELECTRE’s elements into Fuzzy-TOPSISengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessORIGINALEnhancingDiscrimination_SANTI_2015.pdfEnhancingDiscrimination_SANTI_2015.pdfapplication/pdf430836https://repositorio.ufrn.br/bitstream/123456789/30634/1/EnhancingDiscrimination_SANTI_2015.pdfebe9bc8848c4b177180b75352388b5deMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.ufrn.br/bitstream/123456789/30634/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/30634/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTEnhancingDiscrimination_SANTI_2015.pdf.txtEnhancingDiscrimination_SANTI_2015.pdf.txtExtracted texttext/plain67872https://repositorio.ufrn.br/bitstream/123456789/30634/4/EnhancingDiscrimination_SANTI_2015.pdf.txt70bcfabc085f813845f1a49323bc430bMD54THUMBNAILEnhancingDiscrimination_SANTI_2015.pdf.jpgEnhancingDiscrimination_SANTI_2015.pdf.jpgGenerated Thumbnailimage/jpeg1460https://repositorio.ufrn.br/bitstream/123456789/30634/5/EnhancingDiscrimination_SANTI_2015.pdf.jpg42f6ad93a75c284fad3fa48da08364d4MD55123456789/306342023-02-16 16:59:41.467oai:https://repositorio.ufrn.br:123456789/30634Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-02-16T19:59:41Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Enhancing the discrimination of alternatives in Fuzzy-Topsis |
title |
Enhancing the discrimination of alternatives in Fuzzy-Topsis |
spellingShingle |
Enhancing the discrimination of alternatives in Fuzzy-Topsis Santi, Éverton Multicriteria ELECTRE Decision making TOPSIS Fuzzy sets |
title_short |
Enhancing the discrimination of alternatives in Fuzzy-Topsis |
title_full |
Enhancing the discrimination of alternatives in Fuzzy-Topsis |
title_fullStr |
Enhancing the discrimination of alternatives in Fuzzy-Topsis |
title_full_unstemmed |
Enhancing the discrimination of alternatives in Fuzzy-Topsis |
title_sort |
Enhancing the discrimination of alternatives in Fuzzy-Topsis |
author |
Santi, Éverton |
author_facet |
Santi, Éverton Ferreira, Luciano Borenstein, Denis |
author_role |
author |
author2 |
Ferreira, Luciano Borenstein, Denis |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Santi, Éverton Ferreira, Luciano Borenstein, Denis |
dc.subject.por.fl_str_mv |
Multicriteria ELECTRE Decision making TOPSIS Fuzzy sets |
topic |
Multicriteria ELECTRE Decision making TOPSIS Fuzzy sets |
description |
Fuzzy-TOPSIS is one of the most widely applied methods for solving multi-attribute decision making problems. However, an analysis of academic and real-life applications of this method has pointed out that the final alternative scores are very close, with little dispersion among them, making it difficult for the decision makers’ to choice/ranking the alternatives. The main objective of this paper is to enhance the ability of Fuzzy-TOPSIS to discriminate alternatives, making it easy for a decision maker to select or ranking alternatives. To achieve this, we redefined the computation of the positive and negative ideal solution of the classical TOPSIS method as a combination of the fuzzy concordance and discordance indexes from Fuzzy-ELECTRE. The proposed model was validated in a real case study, and further compared with Fuzzy-ELECTRE, using simulation experiments, and Fuzzy-TOPSIS, using results from four recent papers published in the literature. The results obtained show that the proposed method improved the ranking and sorting of the alternatives for all analyzed cases, considering ranking dispersion, global interval range of the scores, and the difference between the first and second best alternatives. The main justification for this behavior is the partial non-compensatory nature of our method, introduced by incorporating some ELECTRE’s elements into Fuzzy-TOPSIS |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-02-06 |
dc.date.accessioned.fl_str_mv |
2020-11-23T19:08:03Z |
dc.date.available.fl_str_mv |
2020-11-23T19:08:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SANTI, Éverton; FERREIRA, Luciano; BORENSTEIN, Denis. Enhancing The Discrimination of Alternatives in Fuzzy-Topsis. Infor: Information Systems and Operational Research, [S.L.], v. 53, n. 4, p. 155-169, nov. 2015. Disponível em: https://www.tandfonline.com/doi/abs/10.3138/infor.53.4.155?journalCode=tinf20. Acesso em: 08 set. 2020. http://dx.doi.org/10.3138/infor.53.4.155 |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/30634 |
dc.identifier.issn.none.fl_str_mv |
0315-5986 |
dc.identifier.doi.none.fl_str_mv |
10.3138/infor.53.4.155 |
identifier_str_mv |
SANTI, Éverton; FERREIRA, Luciano; BORENSTEIN, Denis. Enhancing The Discrimination of Alternatives in Fuzzy-Topsis. Infor: Information Systems and Operational Research, [S.L.], v. 53, n. 4, p. 155-169, nov. 2015. Disponível em: https://www.tandfonline.com/doi/abs/10.3138/infor.53.4.155?journalCode=tinf20. Acesso em: 08 set. 2020. http://dx.doi.org/10.3138/infor.53.4.155 0315-5986 10.3138/infor.53.4.155 |
url |
https://repositorio.ufrn.br/handle/123456789/30634 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Taylor and Francis |
publisher.none.fl_str_mv |
Taylor and Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/30634/1/EnhancingDiscrimination_SANTI_2015.pdf https://repositorio.ufrn.br/bitstream/123456789/30634/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/30634/3/license.txt https://repositorio.ufrn.br/bitstream/123456789/30634/4/EnhancingDiscrimination_SANTI_2015.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/30634/5/EnhancingDiscrimination_SANTI_2015.pdf.jpg |
bitstream.checksum.fl_str_mv |
ebe9bc8848c4b177180b75352388b5de 42fd4ad1e89814f5e4a476b409eb708c e9597aa2854d128fd968be5edc8a28d9 70bcfabc085f813845f1a49323bc430b 42f6ad93a75c284fad3fa48da08364d4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832683376705536 |