Enhancing the discrimination of alternatives in Fuzzy-Topsis

Detalhes bibliográficos
Autor(a) principal: Santi, Éverton
Data de Publicação: 2017
Outros Autores: Ferreira, Luciano, Borenstein, Denis
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/30634
Resumo: Fuzzy-TOPSIS is one of the most widely applied methods for solving multi-attribute decision making problems. However, an analysis of academic and real-life applications of this method has pointed out that the final alternative scores are very close, with little dispersion among them, making it difficult for the decision makers’ to choice/ranking the alternatives. The main objective of this paper is to enhance the ability of Fuzzy-TOPSIS to discriminate alternatives, making it easy for a decision maker to select or ranking alternatives. To achieve this, we redefined the computation of the positive and negative ideal solution of the classical TOPSIS method as a combination of the fuzzy concordance and discordance indexes from Fuzzy-ELECTRE. The proposed model was validated in a real case study, and further compared with Fuzzy-ELECTRE, using simulation experiments, and Fuzzy-TOPSIS, using results from four recent papers published in the literature. The results obtained show that the proposed method improved the ranking and sorting of the alternatives for all analyzed cases, considering ranking dispersion, global interval range of the scores, and the difference between the first and second best alternatives. The main justification for this behavior is the partial non-compensatory nature of our method, introduced by incorporating some ELECTRE’s elements into Fuzzy-TOPSIS
id UFRN_01e0b4be02613eb4b9bc5328ecdd4f14
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/30634
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Santi, ÉvertonFerreira, LucianoBorenstein, Denis2020-11-23T19:08:03Z2020-11-23T19:08:03Z2017-02-06SANTI, Éverton; FERREIRA, Luciano; BORENSTEIN, Denis. Enhancing The Discrimination of Alternatives in Fuzzy-Topsis. Infor: Information Systems and Operational Research, [S.L.], v. 53, n. 4, p. 155-169, nov. 2015. Disponível em: https://www.tandfonline.com/doi/abs/10.3138/infor.53.4.155?journalCode=tinf20. Acesso em: 08 set. 2020. http://dx.doi.org/10.3138/infor.53.4.1550315-5986https://repositorio.ufrn.br/handle/123456789/3063410.3138/infor.53.4.155Taylor and FrancisMulticriteriaELECTREDecision makingTOPSISFuzzy setsEnhancing the discrimination of alternatives in Fuzzy-Topsisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleFuzzy-TOPSIS is one of the most widely applied methods for solving multi-attribute decision making problems. However, an analysis of academic and real-life applications of this method has pointed out that the final alternative scores are very close, with little dispersion among them, making it difficult for the decision makers’ to choice/ranking the alternatives. The main objective of this paper is to enhance the ability of Fuzzy-TOPSIS to discriminate alternatives, making it easy for a decision maker to select or ranking alternatives. To achieve this, we redefined the computation of the positive and negative ideal solution of the classical TOPSIS method as a combination of the fuzzy concordance and discordance indexes from Fuzzy-ELECTRE. The proposed model was validated in a real case study, and further compared with Fuzzy-ELECTRE, using simulation experiments, and Fuzzy-TOPSIS, using results from four recent papers published in the literature. The results obtained show that the proposed method improved the ranking and sorting of the alternatives for all analyzed cases, considering ranking dispersion, global interval range of the scores, and the difference between the first and second best alternatives. The main justification for this behavior is the partial non-compensatory nature of our method, introduced by incorporating some ELECTRE’s elements into Fuzzy-TOPSISengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessORIGINALEnhancingDiscrimination_SANTI_2015.pdfEnhancingDiscrimination_SANTI_2015.pdfapplication/pdf430836https://repositorio.ufrn.br/bitstream/123456789/30634/1/EnhancingDiscrimination_SANTI_2015.pdfebe9bc8848c4b177180b75352388b5deMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.ufrn.br/bitstream/123456789/30634/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/30634/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTEnhancingDiscrimination_SANTI_2015.pdf.txtEnhancingDiscrimination_SANTI_2015.pdf.txtExtracted texttext/plain67872https://repositorio.ufrn.br/bitstream/123456789/30634/4/EnhancingDiscrimination_SANTI_2015.pdf.txt70bcfabc085f813845f1a49323bc430bMD54THUMBNAILEnhancingDiscrimination_SANTI_2015.pdf.jpgEnhancingDiscrimination_SANTI_2015.pdf.jpgGenerated Thumbnailimage/jpeg1460https://repositorio.ufrn.br/bitstream/123456789/30634/5/EnhancingDiscrimination_SANTI_2015.pdf.jpg42f6ad93a75c284fad3fa48da08364d4MD55123456789/306342023-02-16 16:59:41.467oai:https://repositorio.ufrn.br:123456789/30634Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-02-16T19:59:41Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Enhancing the discrimination of alternatives in Fuzzy-Topsis
title Enhancing the discrimination of alternatives in Fuzzy-Topsis
spellingShingle Enhancing the discrimination of alternatives in Fuzzy-Topsis
Santi, Éverton
Multicriteria
ELECTRE
Decision making
TOPSIS
Fuzzy sets
title_short Enhancing the discrimination of alternatives in Fuzzy-Topsis
title_full Enhancing the discrimination of alternatives in Fuzzy-Topsis
title_fullStr Enhancing the discrimination of alternatives in Fuzzy-Topsis
title_full_unstemmed Enhancing the discrimination of alternatives in Fuzzy-Topsis
title_sort Enhancing the discrimination of alternatives in Fuzzy-Topsis
author Santi, Éverton
author_facet Santi, Éverton
Ferreira, Luciano
Borenstein, Denis
author_role author
author2 Ferreira, Luciano
Borenstein, Denis
author2_role author
author
dc.contributor.author.fl_str_mv Santi, Éverton
Ferreira, Luciano
Borenstein, Denis
dc.subject.por.fl_str_mv Multicriteria
ELECTRE
Decision making
TOPSIS
Fuzzy sets
topic Multicriteria
ELECTRE
Decision making
TOPSIS
Fuzzy sets
description Fuzzy-TOPSIS is one of the most widely applied methods for solving multi-attribute decision making problems. However, an analysis of academic and real-life applications of this method has pointed out that the final alternative scores are very close, with little dispersion among them, making it difficult for the decision makers’ to choice/ranking the alternatives. The main objective of this paper is to enhance the ability of Fuzzy-TOPSIS to discriminate alternatives, making it easy for a decision maker to select or ranking alternatives. To achieve this, we redefined the computation of the positive and negative ideal solution of the classical TOPSIS method as a combination of the fuzzy concordance and discordance indexes from Fuzzy-ELECTRE. The proposed model was validated in a real case study, and further compared with Fuzzy-ELECTRE, using simulation experiments, and Fuzzy-TOPSIS, using results from four recent papers published in the literature. The results obtained show that the proposed method improved the ranking and sorting of the alternatives for all analyzed cases, considering ranking dispersion, global interval range of the scores, and the difference between the first and second best alternatives. The main justification for this behavior is the partial non-compensatory nature of our method, introduced by incorporating some ELECTRE’s elements into Fuzzy-TOPSIS
publishDate 2017
dc.date.issued.fl_str_mv 2017-02-06
dc.date.accessioned.fl_str_mv 2020-11-23T19:08:03Z
dc.date.available.fl_str_mv 2020-11-23T19:08:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTI, Éverton; FERREIRA, Luciano; BORENSTEIN, Denis. Enhancing The Discrimination of Alternatives in Fuzzy-Topsis. Infor: Information Systems and Operational Research, [S.L.], v. 53, n. 4, p. 155-169, nov. 2015. Disponível em: https://www.tandfonline.com/doi/abs/10.3138/infor.53.4.155?journalCode=tinf20. Acesso em: 08 set. 2020. http://dx.doi.org/10.3138/infor.53.4.155
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/30634
dc.identifier.issn.none.fl_str_mv 0315-5986
dc.identifier.doi.none.fl_str_mv 10.3138/infor.53.4.155
identifier_str_mv SANTI, Éverton; FERREIRA, Luciano; BORENSTEIN, Denis. Enhancing The Discrimination of Alternatives in Fuzzy-Topsis. Infor: Information Systems and Operational Research, [S.L.], v. 53, n. 4, p. 155-169, nov. 2015. Disponível em: https://www.tandfonline.com/doi/abs/10.3138/infor.53.4.155?journalCode=tinf20. Acesso em: 08 set. 2020. http://dx.doi.org/10.3138/infor.53.4.155
0315-5986
10.3138/infor.53.4.155
url https://repositorio.ufrn.br/handle/123456789/30634
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Taylor and Francis
publisher.none.fl_str_mv Taylor and Francis
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/30634/1/EnhancingDiscrimination_SANTI_2015.pdf
https://repositorio.ufrn.br/bitstream/123456789/30634/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/30634/3/license.txt
https://repositorio.ufrn.br/bitstream/123456789/30634/4/EnhancingDiscrimination_SANTI_2015.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/30634/5/EnhancingDiscrimination_SANTI_2015.pdf.jpg
bitstream.checksum.fl_str_mv ebe9bc8848c4b177180b75352388b5de
42fd4ad1e89814f5e4a476b409eb708c
e9597aa2854d128fd968be5edc8a28d9
70bcfabc085f813845f1a49323bc430b
42f6ad93a75c284fad3fa48da08364d4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832683376705536