A New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Data

Detalhes bibliográficos
Autor(a) principal: Fonseca, André
Data de Publicação: 2016
Outros Autores: Gubitoso, Marco D., Reis, Marcelo S., Souza, Sandro José de, Barrera, Junior
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/23052
Resumo: Cancer cells have anomalous development and proliferation due to disturbances in their control systems. Te study of the behavior of cellular control system requires high-throughput dynamical data. Unfortunately, this type of data is not largely available. Tis fact motivates the main issue of this article: how to use static omics data and available biological knowledge to get new information about the elements of the control system in cancer cells. Two important measures to access the state of the cellular control system are the gene expression profle and the signaling pathways. Tis article uses a combination of these two static omics data to gain insights on the states of a cancer cell. To extract information from this kind of data, a statistical computational model was formalized and implemented. In order to exemplify the application of some aspects of the developed conceptual framework, we verifed the hypothesis that different types of cancer cells have different disturbed signaling pathways. To this end, we developed a method that recovers small protein networks, called motifs, which are differentially represented in some subtypes of breast cancer. Tese differentially represented motifs are enriched with specifc gene ontologies as well as with new putative cancer genes.
id UFRN_06b99df546054c0d8215c3ceec923fbb
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/23052
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Fonseca, AndréGubitoso, Marco D.Reis, Marcelo S.Souza, Sandro José deBarrera, Junior2017-05-23T14:56:05Z2017-05-23T14:56:05Z2016-02-17https://repositorio.ufrn.br/jspui/handle/123456789/2305210.4137/CIn.s30800engcancerpathwaymotifsomic dataA New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Datainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleCancer cells have anomalous development and proliferation due to disturbances in their control systems. Te study of the behavior of cellular control system requires high-throughput dynamical data. Unfortunately, this type of data is not largely available. Tis fact motivates the main issue of this article: how to use static omics data and available biological knowledge to get new information about the elements of the control system in cancer cells. Two important measures to access the state of the cellular control system are the gene expression profle and the signaling pathways. Tis article uses a combination of these two static omics data to gain insights on the states of a cancer cell. To extract information from this kind of data, a statistical computational model was formalized and implemented. In order to exemplify the application of some aspects of the developed conceptual framework, we verifed the hypothesis that different types of cancer cells have different disturbed signaling pathways. To this end, we developed a method that recovers small protein networks, called motifs, which are differentially represented in some subtypes of breast cancer. Tese differentially represented motifs are enriched with specifc gene ontologies as well as with new putative cancer genes.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALA New Approach for Identification of Cancer-related Pathways using Protein Networks and Genomic Data.pdfA New Approach for Identification of Cancer-related Pathways using Protein Networks and Genomic Data.pdfSandroSouza_ICe_New Approach_2016application/pdf2277103https://repositorio.ufrn.br/bitstream/123456789/23052/1/A%20New%20Approach%20for%20Identification%20of%20Cancer-related%20Pathways%20using%20Protein%20Networks%20and%20Genomic%20Data.pdf4275b2f10484dc4073ca978122726955MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/23052/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTA New Approach for Identification of Cancer-related Pathways using Protein Networks and Genomic Data.pdf.txtA New Approach for Identification of Cancer-related Pathways using Protein Networks and Genomic Data.pdf.txtExtracted texttext/plain40551https://repositorio.ufrn.br/bitstream/123456789/23052/5/A%20New%20Approach%20for%20Identification%20of%20Cancer-related%20Pathways%20using%20Protein%20Networks%20and%20Genomic%20Data.pdf.txt7d182fd9e77e3a42fdcd83443f4700ccMD55THUMBNAILA New Approach for Identification of Cancer-related Pathways using Protein Networks and Genomic Data.pdf.jpgA New Approach for Identification of Cancer-related Pathways using Protein Networks and Genomic Data.pdf.jpgIM Thumbnailimage/jpeg11729https://repositorio.ufrn.br/bitstream/123456789/23052/6/A%20New%20Approach%20for%20Identification%20of%20Cancer-related%20Pathways%20using%20Protein%20Networks%20and%20Genomic%20Data.pdf.jpg2ae31ac03a53d9786712e8b4e6e6cfb0MD56123456789/230522021-07-09 19:45:50.904oai:https://repositorio.ufrn.br:123456789/23052Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-07-09T22:45:50Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv A New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Data
title A New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Data
spellingShingle A New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Data
Fonseca, André
cancer
pathway
motifs
omic data
title_short A New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Data
title_full A New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Data
title_fullStr A New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Data
title_full_unstemmed A New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Data
title_sort A New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Data
author Fonseca, André
author_facet Fonseca, André
Gubitoso, Marco D.
Reis, Marcelo S.
Souza, Sandro José de
Barrera, Junior
author_role author
author2 Gubitoso, Marco D.
Reis, Marcelo S.
Souza, Sandro José de
Barrera, Junior
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Fonseca, André
Gubitoso, Marco D.
Reis, Marcelo S.
Souza, Sandro José de
Barrera, Junior
dc.subject.por.fl_str_mv cancer
pathway
motifs
omic data
topic cancer
pathway
motifs
omic data
description Cancer cells have anomalous development and proliferation due to disturbances in their control systems. Te study of the behavior of cellular control system requires high-throughput dynamical data. Unfortunately, this type of data is not largely available. Tis fact motivates the main issue of this article: how to use static omics data and available biological knowledge to get new information about the elements of the control system in cancer cells. Two important measures to access the state of the cellular control system are the gene expression profle and the signaling pathways. Tis article uses a combination of these two static omics data to gain insights on the states of a cancer cell. To extract information from this kind of data, a statistical computational model was formalized and implemented. In order to exemplify the application of some aspects of the developed conceptual framework, we verifed the hypothesis that different types of cancer cells have different disturbed signaling pathways. To this end, we developed a method that recovers small protein networks, called motifs, which are differentially represented in some subtypes of breast cancer. Tese differentially represented motifs are enriched with specifc gene ontologies as well as with new putative cancer genes.
publishDate 2016
dc.date.issued.fl_str_mv 2016-02-17
dc.date.accessioned.fl_str_mv 2017-05-23T14:56:05Z
dc.date.available.fl_str_mv 2017-05-23T14:56:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/23052
dc.identifier.doi.none.fl_str_mv 10.4137/CIn.s30800
url https://repositorio.ufrn.br/jspui/handle/123456789/23052
identifier_str_mv 10.4137/CIn.s30800
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/23052/1/A%20New%20Approach%20for%20Identification%20of%20Cancer-related%20Pathways%20using%20Protein%20Networks%20and%20Genomic%20Data.pdf
https://repositorio.ufrn.br/bitstream/123456789/23052/2/license.txt
https://repositorio.ufrn.br/bitstream/123456789/23052/5/A%20New%20Approach%20for%20Identification%20of%20Cancer-related%20Pathways%20using%20Protein%20Networks%20and%20Genomic%20Data.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/23052/6/A%20New%20Approach%20for%20Identification%20of%20Cancer-related%20Pathways%20using%20Protein%20Networks%20and%20Genomic%20Data.pdf.jpg
bitstream.checksum.fl_str_mv 4275b2f10484dc4073ca978122726955
8a4605be74aa9ea9d79846c1fba20a33
7d182fd9e77e3a42fdcd83443f4700cc
2ae31ac03a53d9786712e8b4e6e6cfb0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832778667098112