A New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/23052 |
Resumo: | Cancer cells have anomalous development and proliferation due to disturbances in their control systems. Te study of the behavior of cellular control system requires high-throughput dynamical data. Unfortunately, this type of data is not largely available. Tis fact motivates the main issue of this article: how to use static omics data and available biological knowledge to get new information about the elements of the control system in cancer cells. Two important measures to access the state of the cellular control system are the gene expression profle and the signaling pathways. Tis article uses a combination of these two static omics data to gain insights on the states of a cancer cell. To extract information from this kind of data, a statistical computational model was formalized and implemented. In order to exemplify the application of some aspects of the developed conceptual framework, we verifed the hypothesis that different types of cancer cells have different disturbed signaling pathways. To this end, we developed a method that recovers small protein networks, called motifs, which are differentially represented in some subtypes of breast cancer. Tese differentially represented motifs are enriched with specifc gene ontologies as well as with new putative cancer genes. |
id |
UFRN_06b99df546054c0d8215c3ceec923fbb |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/23052 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Fonseca, AndréGubitoso, Marco D.Reis, Marcelo S.Souza, Sandro José deBarrera, Junior2017-05-23T14:56:05Z2017-05-23T14:56:05Z2016-02-17https://repositorio.ufrn.br/jspui/handle/123456789/2305210.4137/CIn.s30800engcancerpathwaymotifsomic dataA New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Datainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleCancer cells have anomalous development and proliferation due to disturbances in their control systems. Te study of the behavior of cellular control system requires high-throughput dynamical data. Unfortunately, this type of data is not largely available. Tis fact motivates the main issue of this article: how to use static omics data and available biological knowledge to get new information about the elements of the control system in cancer cells. Two important measures to access the state of the cellular control system are the gene expression profle and the signaling pathways. Tis article uses a combination of these two static omics data to gain insights on the states of a cancer cell. To extract information from this kind of data, a statistical computational model was formalized and implemented. In order to exemplify the application of some aspects of the developed conceptual framework, we verifed the hypothesis that different types of cancer cells have different disturbed signaling pathways. To this end, we developed a method that recovers small protein networks, called motifs, which are differentially represented in some subtypes of breast cancer. Tese differentially represented motifs are enriched with specifc gene ontologies as well as with new putative cancer genes.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALA New Approach for Identification of Cancer-related Pathways using Protein Networks and Genomic Data.pdfA New Approach for Identification of Cancer-related Pathways using Protein Networks and Genomic Data.pdfSandroSouza_ICe_New Approach_2016application/pdf2277103https://repositorio.ufrn.br/bitstream/123456789/23052/1/A%20New%20Approach%20for%20Identification%20of%20Cancer-related%20Pathways%20using%20Protein%20Networks%20and%20Genomic%20Data.pdf4275b2f10484dc4073ca978122726955MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/23052/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTA New Approach for Identification of Cancer-related Pathways using Protein Networks and Genomic Data.pdf.txtA New Approach for Identification of Cancer-related Pathways using Protein Networks and Genomic Data.pdf.txtExtracted texttext/plain40551https://repositorio.ufrn.br/bitstream/123456789/23052/5/A%20New%20Approach%20for%20Identification%20of%20Cancer-related%20Pathways%20using%20Protein%20Networks%20and%20Genomic%20Data.pdf.txt7d182fd9e77e3a42fdcd83443f4700ccMD55THUMBNAILA New Approach for Identification of Cancer-related Pathways using Protein Networks and Genomic Data.pdf.jpgA New Approach for Identification of Cancer-related Pathways using Protein Networks and Genomic Data.pdf.jpgIM Thumbnailimage/jpeg11729https://repositorio.ufrn.br/bitstream/123456789/23052/6/A%20New%20Approach%20for%20Identification%20of%20Cancer-related%20Pathways%20using%20Protein%20Networks%20and%20Genomic%20Data.pdf.jpg2ae31ac03a53d9786712e8b4e6e6cfb0MD56123456789/230522021-07-09 19:45:50.904oai:https://repositorio.ufrn.br:123456789/23052Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-07-09T22:45:50Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
A New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Data |
title |
A New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Data |
spellingShingle |
A New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Data Fonseca, André cancer pathway motifs omic data |
title_short |
A New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Data |
title_full |
A New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Data |
title_fullStr |
A New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Data |
title_full_unstemmed |
A New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Data |
title_sort |
A New Approach for Identifcation of Cancer-related Pathways using Protein Networks and Genomic Data |
author |
Fonseca, André |
author_facet |
Fonseca, André Gubitoso, Marco D. Reis, Marcelo S. Souza, Sandro José de Barrera, Junior |
author_role |
author |
author2 |
Gubitoso, Marco D. Reis, Marcelo S. Souza, Sandro José de Barrera, Junior |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Fonseca, André Gubitoso, Marco D. Reis, Marcelo S. Souza, Sandro José de Barrera, Junior |
dc.subject.por.fl_str_mv |
cancer pathway motifs omic data |
topic |
cancer pathway motifs omic data |
description |
Cancer cells have anomalous development and proliferation due to disturbances in their control systems. Te study of the behavior of cellular control system requires high-throughput dynamical data. Unfortunately, this type of data is not largely available. Tis fact motivates the main issue of this article: how to use static omics data and available biological knowledge to get new information about the elements of the control system in cancer cells. Two important measures to access the state of the cellular control system are the gene expression profle and the signaling pathways. Tis article uses a combination of these two static omics data to gain insights on the states of a cancer cell. To extract information from this kind of data, a statistical computational model was formalized and implemented. In order to exemplify the application of some aspects of the developed conceptual framework, we verifed the hypothesis that different types of cancer cells have different disturbed signaling pathways. To this end, we developed a method that recovers small protein networks, called motifs, which are differentially represented in some subtypes of breast cancer. Tese differentially represented motifs are enriched with specifc gene ontologies as well as with new putative cancer genes. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-02-17 |
dc.date.accessioned.fl_str_mv |
2017-05-23T14:56:05Z |
dc.date.available.fl_str_mv |
2017-05-23T14:56:05Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/23052 |
dc.identifier.doi.none.fl_str_mv |
10.4137/CIn.s30800 |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/23052 |
identifier_str_mv |
10.4137/CIn.s30800 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/23052/1/A%20New%20Approach%20for%20Identification%20of%20Cancer-related%20Pathways%20using%20Protein%20Networks%20and%20Genomic%20Data.pdf https://repositorio.ufrn.br/bitstream/123456789/23052/2/license.txt https://repositorio.ufrn.br/bitstream/123456789/23052/5/A%20New%20Approach%20for%20Identification%20of%20Cancer-related%20Pathways%20using%20Protein%20Networks%20and%20Genomic%20Data.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/23052/6/A%20New%20Approach%20for%20Identification%20of%20Cancer-related%20Pathways%20using%20Protein%20Networks%20and%20Genomic%20Data.pdf.jpg |
bitstream.checksum.fl_str_mv |
4275b2f10484dc4073ca978122726955 8a4605be74aa9ea9d79846c1fba20a33 7d182fd9e77e3a42fdcd83443f4700cc 2ae31ac03a53d9786712e8b4e6e6cfb0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832778667098112 |