Otimização e análise mecânica de pastas geopoliméricas para uso em poços sujeitos à injeção cíclica de vapor

Detalhes bibliográficos
Autor(a) principal: Paiva, Maria das Dores Macedo
Data de Publicação: 2008
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/12729
Resumo: Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)
id UFRN_341de48d6dd86b12dc6961daf368e8da
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/12729
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Paiva, Maria das Dores Macedohttp://lattes.cnpq.br/5126010316659979http://lattes.cnpq.br/3318871716111536Martinelli, Antônio Eduardohttp://lattes.cnpq.br/0022988322449627Toledo Filho, Romildo Diashttp://lattes.cnpq.br/5126010316659979Melo, Marcus Antônio de Freitashttp://lattes.cnpq.br/5840621182000517Marinho, érika Pintohttp://lattes.cnpq.br/1192938961586608Melo, Dulce Maria de Araújo2014-12-17T14:07:00Z2009-06-152014-12-17T14:07:00Z2008-10-28PAIVA, Maria das Dores Macedo. Otimização e análise mecânica de pastas geopoliméricas para uso em poços sujeitos à injeção cíclica de vapor. 2008. 173 f. Tese (Doutorado em Processamento de Materiais a partir do Pó; Polímeros e Compósitos; Processamento de Materiais a part) - Universidade Federal do Rio Grande do Norte, Natal, 2008.https://repositorio.ufrn.br/jspui/handle/123456789/12729Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)Poços sujeitos à injeção cíclica de vapor apresentam importantes desafios para desenvolvimento de pastas de cimentação, devido principalmente aos esforços de tração causados pelos gradientes térmicos durante a sua vida útil. Falhas em cimentações que empregaram pastas convencionais de elevada resistência à compressão levaram ao emprego de pastas mais flexíveis e/ou dúcteis, com destaque para as pastas de cimento Portland com adição de látex. Recentes pesquisas têm apresentado pastas geopoliméricas como alternativa. Estas pastas cimentantes são baseadas na ativação alcalina de aluminosilicatos amorfos como o metacaulim ou a cinza volante e possuem propriedades vantajosas como alta resistência à compressão, rápido endurecimento e estabilidade térmica. Encontram-se na literatura formulações geopoliméricas básicas que atendem às especificações da indústria de petróleo, incluindo reologia, resistência à compressão e tempo de espessamento. Neste trabalho, desenvolveu-se novas formulações geopoliméricas à base de metacaulim, silicato de potássio, hidróxido de potássio, microssílica e fibra mineral, utilizando o estado da arte em composição química, modelagem de misturas e aditivação para otimizar as propriedades relevantes para a cimentação de poços. Partindo de razões molares consideradas ideais na literatura (SiO2/Al2O3 = 3,8 e K2O/Al2O3 = 1,0), realizou-se um estudo de misturas secas baseado no modelo do empacotamento compressível, obtendo-se um volume ótimo de 6% para o material sólido adicional. Este material (microssílica e fibra mineral) serve tanto como fonte de sílica adicional (no caso da microssílica) quanto reforço mecânico, principalmente no caso da fibra mineral, a qual incrementou a resistência à tração. Realizou-se o primeiro estudo mecânico triaxial desta classe de pastas. Para efeito de comparação, também foi realizado um estudo mecânico de pastas convencionais à base de látex. Apesar de diferenças no modo de ruptura (frágil no caso dos geopolímeros, dúctil no caso das pastas com látex), a superior resistência compressiva uniaxial (37 MPa para a pasta geopolimérica P5 versus 18 MPa para a pasta convencional P2), comportamento triaxial similar (ângulo de atrito 21° para P5 e P2) e menor rigidez (na região elástica 5,1 GPa para P5 versus 6,8 GPa para P2) das pastas geopoliméricas permitiu uma capacidade de absorção de energia (155 kJ/m3 para P5 versus 208 kJ/m3 para P2) comparável entre as duas, sendo que os geopolímeros atuam no regime elástico, sem a microfissuração presente nas pastas com látex. Assim, os geopolímeros estudados neste trabalho devem ser dimensionados para aplicações no regime elástico para evitar fraturas frágeis. Finalmente, a resistência à tração do geopolímero é originalmente pobre (1,3 MPa para a pasta geopolimérica P3) devido à sua estrutura frágil. Entretanto, após a aditivação desse sistema com fibra mineral, a resistência à tração do mesmo tornou-se equivalente (2,3 MPa para P5 e 2,1 MPa para P2) à das pastas com látex. A viabilidade técnica das formulações convencionais e geopoliméricas foi avaliada durante toda a vida útil do poço, incluindo os esforços devidos à injeção cíclica de vapor. Esta análise foi feita utilizando um software de simulação à base de elementos finitos. Verificou-se que as pastas convencionais são viáveis até a temperatura de 204°C (400°F) e as geopoliméricas acima de 260°C (500°F)application/pdfporUniversidade Federal do Rio Grande do NortePrograma de Pós-Graduação em Ciência e Engenharia de MateriaisUFRNBRProcessamento de Materiais a partir do Pó; Polímeros e Compósitos; Processamento de Materiais a partCimentação de poços de petróleoInjeção cíclica de vaporGeopolímeroPropriedades mecânicasCimento Portland com látexSimulação computacionalOil well cementingCyclic steam injectionGeopolymerMechanical propertiesLatex-based Portland cement systemComputer simulationCNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICAOtimização e análise mecânica de pastas geopoliméricas para uso em poços sujeitos à injeção cíclica de vaporinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALOtimizacaoAnáliseMecânica_Paiva_2008.pdfOtimizacaoAnáliseMecânica_Paiva_2008.pdfapplication/pdf6901418https://repositorio.ufrn.br/bitstream/123456789/12729/1/OtimizacaoAn%c3%a1liseMec%c3%a2nica_Paiva_2008.pdf486568167a5558e6311901fcd48989abMD51TEXTMariaDMP_TESE.pdf.txtMariaDMP_TESE.pdf.txtExtracted texttext/plain287103https://repositorio.ufrn.br/bitstream/123456789/12729/6/MariaDMP_TESE.pdf.txtbb110f883da1d566d0fb0f7c77147056MD56OtimizacaoAnáliseMecânica_Paiva_2008.pdf.txtOtimizacaoAnáliseMecânica_Paiva_2008.pdf.txtExtracted texttext/plain287103https://repositorio.ufrn.br/bitstream/123456789/12729/8/OtimizacaoAn%c3%a1liseMec%c3%a2nica_Paiva_2008.pdf.txtbb110f883da1d566d0fb0f7c77147056MD58OtimizacaoAnáliseMecânica_Paiva_2008.pdf.txtOtimizacaoAnáliseMecânica_Paiva_2008.pdf.txtExtracted texttext/plain287103https://repositorio.ufrn.br/bitstream/123456789/12729/8/OtimizacaoAn%c3%a1liseMec%c3%a2nica_Paiva_2008.pdf.txtbb110f883da1d566d0fb0f7c77147056MD58THUMBNAILMariaDMP_TESE.pdf.jpgMariaDMP_TESE.pdf.jpgIM Thumbnailimage/jpeg2879https://repositorio.ufrn.br/bitstream/123456789/12729/7/MariaDMP_TESE.pdf.jpg84fae10e8d9783e59fdb5659d39e4436MD57OtimizacaoAnáliseMecânica_Paiva_2008.pdf.jpgOtimizacaoAnáliseMecânica_Paiva_2008.pdf.jpgIM Thumbnailimage/jpeg2878https://repositorio.ufrn.br/bitstream/123456789/12729/9/OtimizacaoAn%c3%a1liseMec%c3%a2nica_Paiva_2008.pdf.jpg724825662695e23cb668213db04b52f7MD59OtimizacaoAnáliseMecânica_Paiva_2008.pdf.jpgOtimizacaoAnáliseMecânica_Paiva_2008.pdf.jpgIM Thumbnailimage/jpeg2878https://repositorio.ufrn.br/bitstream/123456789/12729/9/OtimizacaoAn%c3%a1liseMec%c3%a2nica_Paiva_2008.pdf.jpg724825662695e23cb668213db04b52f7MD59123456789/127292019-01-30 05:45:15.773oai:https://repositorio.ufrn.br:123456789/12729Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2019-01-30T08:45:15Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.por.fl_str_mv Otimização e análise mecânica de pastas geopoliméricas para uso em poços sujeitos à injeção cíclica de vapor
title Otimização e análise mecânica de pastas geopoliméricas para uso em poços sujeitos à injeção cíclica de vapor
spellingShingle Otimização e análise mecânica de pastas geopoliméricas para uso em poços sujeitos à injeção cíclica de vapor
Paiva, Maria das Dores Macedo
Cimentação de poços de petróleo
Injeção cíclica de vapor
Geopolímero
Propriedades mecânicas
Cimento Portland com látex
Simulação computacional
Oil well cementing
Cyclic steam injection
Geopolymer
Mechanical properties
Latex-based Portland cement system
Computer simulation
CNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
title_short Otimização e análise mecânica de pastas geopoliméricas para uso em poços sujeitos à injeção cíclica de vapor
title_full Otimização e análise mecânica de pastas geopoliméricas para uso em poços sujeitos à injeção cíclica de vapor
title_fullStr Otimização e análise mecânica de pastas geopoliméricas para uso em poços sujeitos à injeção cíclica de vapor
title_full_unstemmed Otimização e análise mecânica de pastas geopoliméricas para uso em poços sujeitos à injeção cíclica de vapor
title_sort Otimização e análise mecânica de pastas geopoliméricas para uso em poços sujeitos à injeção cíclica de vapor
author Paiva, Maria das Dores Macedo
author_facet Paiva, Maria das Dores Macedo
author_role author
dc.contributor.authorID.por.fl_str_mv
dc.contributor.authorLattes.por.fl_str_mv http://lattes.cnpq.br/5126010316659979
dc.contributor.advisorID.por.fl_str_mv
dc.contributor.advisorLattes.por.fl_str_mv http://lattes.cnpq.br/3318871716111536
dc.contributor.advisor-co1ID.por.fl_str_mv
dc.contributor.advisor-co2ID.por.fl_str_mv
dc.contributor.referees1.pt_BR.fl_str_mv Melo, Marcus Antônio de Freitas
dc.contributor.referees1ID.por.fl_str_mv
dc.contributor.referees1Lattes.por.fl_str_mv http://lattes.cnpq.br/5840621182000517
dc.contributor.referees2.pt_BR.fl_str_mv Marinho, érika Pinto
dc.contributor.referees2ID.por.fl_str_mv
dc.contributor.referees2Lattes.por.fl_str_mv http://lattes.cnpq.br/1192938961586608
dc.contributor.author.fl_str_mv Paiva, Maria das Dores Macedo
dc.contributor.advisor-co1.fl_str_mv Martinelli, Antônio Eduardo
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/0022988322449627
dc.contributor.advisor-co2.fl_str_mv Toledo Filho, Romildo Dias
dc.contributor.advisor-co2Lattes.fl_str_mv http://lattes.cnpq.br/5126010316659979
dc.contributor.advisor1.fl_str_mv Melo, Dulce Maria de Araújo
contributor_str_mv Martinelli, Antônio Eduardo
Toledo Filho, Romildo Dias
Melo, Dulce Maria de Araújo
dc.subject.por.fl_str_mv Cimentação de poços de petróleo
Injeção cíclica de vapor
Geopolímero
Propriedades mecânicas
Cimento Portland com látex
Simulação computacional
topic Cimentação de poços de petróleo
Injeção cíclica de vapor
Geopolímero
Propriedades mecânicas
Cimento Portland com látex
Simulação computacional
Oil well cementing
Cyclic steam injection
Geopolymer
Mechanical properties
Latex-based Portland cement system
Computer simulation
CNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
dc.subject.eng.fl_str_mv Oil well cementing
Cyclic steam injection
Geopolymer
Mechanical properties
Latex-based Portland cement system
Computer simulation
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
description Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)
publishDate 2008
dc.date.issued.fl_str_mv 2008-10-28
dc.date.available.fl_str_mv 2009-06-15
2014-12-17T14:07:00Z
dc.date.accessioned.fl_str_mv 2014-12-17T14:07:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PAIVA, Maria das Dores Macedo. Otimização e análise mecânica de pastas geopoliméricas para uso em poços sujeitos à injeção cíclica de vapor. 2008. 173 f. Tese (Doutorado em Processamento de Materiais a partir do Pó; Polímeros e Compósitos; Processamento de Materiais a part) - Universidade Federal do Rio Grande do Norte, Natal, 2008.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/12729
identifier_str_mv PAIVA, Maria das Dores Macedo. Otimização e análise mecânica de pastas geopoliméricas para uso em poços sujeitos à injeção cíclica de vapor. 2008. 173 f. Tese (Doutorado em Processamento de Materiais a partir do Pó; Polímeros e Compósitos; Processamento de Materiais a part) - Universidade Federal do Rio Grande do Norte, Natal, 2008.
url https://repositorio.ufrn.br/jspui/handle/123456789/12729
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência e Engenharia de Materiais
dc.publisher.initials.fl_str_mv UFRN
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Processamento de Materiais a partir do Pó; Polímeros e Compósitos; Processamento de Materiais a part
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/12729/1/OtimizacaoAn%c3%a1liseMec%c3%a2nica_Paiva_2008.pdf
https://repositorio.ufrn.br/bitstream/123456789/12729/6/MariaDMP_TESE.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/12729/8/OtimizacaoAn%c3%a1liseMec%c3%a2nica_Paiva_2008.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/12729/8/OtimizacaoAn%c3%a1liseMec%c3%a2nica_Paiva_2008.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/12729/7/MariaDMP_TESE.pdf.jpg
https://repositorio.ufrn.br/bitstream/123456789/12729/9/OtimizacaoAn%c3%a1liseMec%c3%a2nica_Paiva_2008.pdf.jpg
https://repositorio.ufrn.br/bitstream/123456789/12729/9/OtimizacaoAn%c3%a1liseMec%c3%a2nica_Paiva_2008.pdf.jpg
bitstream.checksum.fl_str_mv 486568167a5558e6311901fcd48989ab
bb110f883da1d566d0fb0f7c77147056
bb110f883da1d566d0fb0f7c77147056
bb110f883da1d566d0fb0f7c77147056
84fae10e8d9783e59fdb5659d39e4436
724825662695e23cb668213db04b52f7
724825662695e23cb668213db04b52f7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1802117529106120704