Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/32530 |
Resumo: | It is of the highest importance to study different alternatives/strategies as simultaneous (SSF) and semi-simultaneous (SSSF) saccharification and fermentation process, as well as the prospects of the utilization of lignocellulosic residues as raw materials for fuel-ethanol production. In the first part of this work, different raw materials (cactus (CAC), green coconut shell (GCS), mature coconut fibre (MCF) and mature coconut shell (MCS)) were pretreated by sequential alkaline hydrogen peroxide (Alk-H2O2)–sodium hydroxide (NaOH) process. The characterization of the obtained solids by FTIR, SEM, X-ray and crystallinity indexes confirmed the higher susceptibility of these pretreated materials to enzymatic action. These results were further confirmed by the corresponding glucose conversion yields – 68.44%, 70.20%, 76.21% and 74.50% for CAC, GCS, MCF and MCS, respectively. Subsequently, the comparison between SSF and SSSF using Saccharomyces cerevisiae, Pichia stipitis, Zymomonas mobilis and pretreated MCF (selected in the enzymatic hydrolysis step) was done, being shown that a short presaccharification step at 50 C for 8 h in the SSSF had a positive effect on the overall ethanol yield, with an increase from 79.27–84.64% to 85.04–89.15%. In all the cases, the SSSF strategy allowed the obtention of higher ethanol concentrations than SSF |
id |
UFRN_4150e5b9ab8421178a458bea5627c60c |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/32530 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Santos, Everaldo Silvino dosGonçalves, Fabiano AvelinoLeza, Héctor Arturo RuizNogueira, Cleitiane da CostaTeixeira, José AntónioMacedo, Gorete Ribeiro de2021-05-17T13:35:25Z2021-05-17T13:35:25Z2014-09-01GONCALVES, F. A.; RUIZ, H. A.; NOGUEIRA, C. C.; SANTOS, E. S.; TEIXEIRA, J. A. ; Macedo, Gorete Ribeiro. Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies. Fuel (Guildford), p. 66, 2014. http://dx.doi.org/10.1016/j.fuel.2014.04.021 Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0016236114003421?via%3Dihub Acesso em: 06 abr. 2021. https://doi.org/10.1016/j.fuel.2014.04.0210016-2361https://repositorio.ufrn.br/handle/123456789/3253010.1016/j.fuel.2014.04.021ElsevierAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessBioethanolPretreatmentCoconut fibreSSSFEnzymatic hydrolysisComparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIt is of the highest importance to study different alternatives/strategies as simultaneous (SSF) and semi-simultaneous (SSSF) saccharification and fermentation process, as well as the prospects of the utilization of lignocellulosic residues as raw materials for fuel-ethanol production. In the first part of this work, different raw materials (cactus (CAC), green coconut shell (GCS), mature coconut fibre (MCF) and mature coconut shell (MCS)) were pretreated by sequential alkaline hydrogen peroxide (Alk-H2O2)–sodium hydroxide (NaOH) process. The characterization of the obtained solids by FTIR, SEM, X-ray and crystallinity indexes confirmed the higher susceptibility of these pretreated materials to enzymatic action. These results were further confirmed by the corresponding glucose conversion yields – 68.44%, 70.20%, 76.21% and 74.50% for CAC, GCS, MCF and MCS, respectively. Subsequently, the comparison between SSF and SSSF using Saccharomyces cerevisiae, Pichia stipitis, Zymomonas mobilis and pretreated MCF (selected in the enzymatic hydrolysis step) was done, being shown that a short presaccharification step at 50 C for 8 h in the SSSF had a positive effect on the overall ethanol yield, with an increase from 79.27–84.64% to 85.04–89.15%. In all the cases, the SSSF strategy allowed the obtention of higher ethanol concentrations than SSFengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNLICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/32530/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/32530/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52123456789/325302023-02-06 16:36:20.627oai:https://repositorio.ufrn.br:123456789/32530Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-02-06T19:36:20Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies |
title |
Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies |
spellingShingle |
Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies Santos, Everaldo Silvino dos Bioethanol Pretreatment Coconut fibre SSSF Enzymatic hydrolysis |
title_short |
Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies |
title_full |
Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies |
title_fullStr |
Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies |
title_full_unstemmed |
Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies |
title_sort |
Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies |
author |
Santos, Everaldo Silvino dos |
author_facet |
Santos, Everaldo Silvino dos Gonçalves, Fabiano Avelino Leza, Héctor Arturo Ruiz Nogueira, Cleitiane da Costa Teixeira, José António Macedo, Gorete Ribeiro de |
author_role |
author |
author2 |
Gonçalves, Fabiano Avelino Leza, Héctor Arturo Ruiz Nogueira, Cleitiane da Costa Teixeira, José António Macedo, Gorete Ribeiro de |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Santos, Everaldo Silvino dos Gonçalves, Fabiano Avelino Leza, Héctor Arturo Ruiz Nogueira, Cleitiane da Costa Teixeira, José António Macedo, Gorete Ribeiro de |
dc.subject.por.fl_str_mv |
Bioethanol Pretreatment Coconut fibre SSSF Enzymatic hydrolysis |
topic |
Bioethanol Pretreatment Coconut fibre SSSF Enzymatic hydrolysis |
description |
It is of the highest importance to study different alternatives/strategies as simultaneous (SSF) and semi-simultaneous (SSSF) saccharification and fermentation process, as well as the prospects of the utilization of lignocellulosic residues as raw materials for fuel-ethanol production. In the first part of this work, different raw materials (cactus (CAC), green coconut shell (GCS), mature coconut fibre (MCF) and mature coconut shell (MCS)) were pretreated by sequential alkaline hydrogen peroxide (Alk-H2O2)–sodium hydroxide (NaOH) process. The characterization of the obtained solids by FTIR, SEM, X-ray and crystallinity indexes confirmed the higher susceptibility of these pretreated materials to enzymatic action. These results were further confirmed by the corresponding glucose conversion yields – 68.44%, 70.20%, 76.21% and 74.50% for CAC, GCS, MCF and MCS, respectively. Subsequently, the comparison between SSF and SSSF using Saccharomyces cerevisiae, Pichia stipitis, Zymomonas mobilis and pretreated MCF (selected in the enzymatic hydrolysis step) was done, being shown that a short presaccharification step at 50 C for 8 h in the SSSF had a positive effect on the overall ethanol yield, with an increase from 79.27–84.64% to 85.04–89.15%. In all the cases, the SSSF strategy allowed the obtention of higher ethanol concentrations than SSF |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-09-01 |
dc.date.accessioned.fl_str_mv |
2021-05-17T13:35:25Z |
dc.date.available.fl_str_mv |
2021-05-17T13:35:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GONCALVES, F. A.; RUIZ, H. A.; NOGUEIRA, C. C.; SANTOS, E. S.; TEIXEIRA, J. A. ; Macedo, Gorete Ribeiro. Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies. Fuel (Guildford), p. 66, 2014. http://dx.doi.org/10.1016/j.fuel.2014.04.021 Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0016236114003421?via%3Dihub Acesso em: 06 abr. 2021. https://doi.org/10.1016/j.fuel.2014.04.021 |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/32530 |
dc.identifier.issn.none.fl_str_mv |
0016-2361 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.fuel.2014.04.021 |
identifier_str_mv |
GONCALVES, F. A.; RUIZ, H. A.; NOGUEIRA, C. C.; SANTOS, E. S.; TEIXEIRA, J. A. ; Macedo, Gorete Ribeiro. Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies. Fuel (Guildford), p. 66, 2014. http://dx.doi.org/10.1016/j.fuel.2014.04.021 Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0016236114003421?via%3Dihub Acesso em: 06 abr. 2021. https://doi.org/10.1016/j.fuel.2014.04.021 0016-2361 10.1016/j.fuel.2014.04.021 |
url |
https://repositorio.ufrn.br/handle/123456789/32530 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/32530/3/license.txt https://repositorio.ufrn.br/bitstream/123456789/32530/2/license_rdf |
bitstream.checksum.fl_str_mv |
e9597aa2854d128fd968be5edc8a28d9 4d2950bda3d176f570a9f8b328dfbbef |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832764062531584 |